
Research Statement
TALIA RINGER

My long-term goal as a researcher is to make it easy for programmers of all skill levels
across all domains to build formally verified software systems. With verification, program-

mers can guarantee the absence of costly or dangerous bugs in critical systems. This guarantee

provides practical benefits: practitioners have found verified systems to be more robust and secure

in deployment. My research focuses on proof engineering—technologies that make it easier to

develop and maintain these verified systems—with an emphasis on maintenance.

My work makes it easier to maintain systems that have been verified using tools called proof
assistants. To develop a verified system using a proof assistant, the proof engineer does three things:

(1) implements a program using a functional programming language,

(2) specifies what it means for the program to be correct, and

(3) proves that the program satisfies the specification.

The process of writing this proof is interactive: The proof engineer sends strategies (called tactics)
to the proof assistant to solve an outstanding proof obligation, and the proof assistant responds

with a new proof obligation. This continues until the proof assistant finds a proof that it can check.

If the proof is correct, the program behaves as specified—it is verified.
My passion is making it easier to maintain verified systems. I am a programming languages

and verification researcher, though my work draws parallels to software engineering. Much like

software engineering scales programming to large systems, proof engineering scales verification

to large systems. In recent years, proof engineers have verified operating system (OS) kernels,

machine learning systems, distributed systems, constraint solvers, web browser kernels, compilers,

and file systems. Nonetheless, while proof engineering—like software engineering—is about both

development and maintenance, most work so far has focused on development. When it comes

to maintaining these systems, proof engineering is decades behind software engineering. I have

detailed this gap in a monograph that surveys the field of proof engineering [Ringer et al. 2019a].
My research introduces proof repair: a new approach to maintaining verified systems.

It develops foundational results in dependent type theory (DTT) and leverages those results to

build flexible and useful proof repair tools. These tools have already been used to automate difficult

changes, and to support an industrial proof engineer writing proofs about an implementation of

the TLS handshake protocol. This marks the first step toward my long-term research vision of

verification for all—from beginners to experts across all domains of computer science.

Proof Repair
Proof repair automatically fixes broken proofs in response to changes in programs and specifications.

For example, a proof engineer who optimizes an algorithm may change the program, but not the

specification; a proof engineer who adapts an OS to new hardware may change both. Even a small

change to a program or specification can break many proofs, especially in large systems. Changing

a verified library, for example, can break proofs about programs that depend on that library.

Proof repair views broken proofs as bugs that a tool can patch, much like program repair does

for unverified programs. Proof assistants are a good fit for program repair: A recent review of a

widely used but often incorrect program repair approach recommends that program repair tools

draw on extra information like specifications or example patches. Examples and specifications are

rich and widely available in proof assistants; proof repair draws on both.

I have implemented a suite of proof repair tools for the Coq proof assistant called Pumpkin Patch.

With Pumpkin Patch, when a program or specification changes and this breaks many proofs, the

proof engineer need only fix one—or, in some cases, none—of the broken proofs. Pumpkin Patch has

performed well on proof engineering benchmarks. It has also been used to help a professional proof

engineer at Galois, Inc. integrate Coq with other tools and write proofs about an implementation

of TLS. I continue to partner with Galois to support new use cases.

https://github.com/uwplse/PUMPKIN-PATCH
https://galois.com/


Automation for Change. My early work introduces proof repair and implements a Pumpkin

Patch prototype [Ringer et al. 2018]. Proof repair reimagines proof automation: the interactive
process of passing tactics to the proof assistant in order to search for a proof. When a program or

specification changes and this breaks a proof, traditional proof automation searches for the fixed

proof from scratch. Proof repair, in contrast, determines how the program or specification has

changed, and uses that information to help fix the broken proof.

My key insight is that even a single example fix in the context of a particular proof can sometimes

carry enough information to fix proofs in other contexts. That way, when a program or specification

changes and this breaks proofs that depend on it, the proof engineer can sometimes fix just one

of those broken proofs. A tool can then generalize that fix into a reusable patch, something that

the proof engineer can use with traditional proof automation to fix other broken proofs as well. In

some cases, if the fix comes from a library, a tool can generalize a fix to a proof that the library

developer already made, so that the library-client developer need not fix any proofs at all.

On a technical level, this insight builds on the rich dependently typed language at the core of

Coq. Each proof Coq produces is a proof term whose type is its specification. When the proof

engineer fixes the example broken proof, the proof term changes. My novel proof search techniques

find the difference between the original proof term and the fixed proof term, then transform that

difference—itself a proof term—to lift it out of the context of the example proof.

These techniques are implemented in the Pumpkin Patch prototype. This prototype is demon-

strated on three case studies: updating proofs in response to a change in the CompCert C compiler,

porting proofs between two versions of a datatype from different solutions to an exercise from the

Software Foundations textbook, and updating the Coq standard library.

The Changes that Matter. Pumpkin Patch aims to meet the needs of proof engineers. To help

determine these needs, my collaborators and I launched a user study of eight Coq proof engi-

neers [Ringer et al. 2020]. We monitored every change to programs, specifications, and proofs

that these proof engineers made over the course of a month. The changes that we found revealed

patterns amenable to automation. We captured those patterns in the form of benchmarks for

measuring the improvement of proof engineering tools.

To collect data granular enough to observe incremental changes, we instrumented Coq. Our

data, benchmarks, and infrastructure are publicly available, and our instrumentation is part of the

official Coq 8.10 release. Our findings have driven and continue to drive improvements to Pumpkin

Patch and to a machine learning tool for proofs. There are plans for other researchers to use them

to drive improvements to a property-based testing tool for proofs as well.

Automation for the Changes that Matter. My latest work takes Pumpkin Patch from a prototype

to a flexible and powerful tool that meets the needs of proof engineers. The prototype was limited in

scope and usability by its approach: it generalized an example proof fix into a reusable patch, then

relied on the proof engineer to apply that patch. The key insight to building a flexible, powerful,

and useful tool was to instead reuse the old proof to directly derive a new proof.

To bridge the gap between reuse and repair, I developed a proof term transformation that

implements a powerful kind of reuse—technically known as transport across equivalences. My

transformation is the only technique I am aware of that implements transport in a way that is

suitable for repair and that does not rely on any axioms beyond those Coq assumes.

My research on this transformation started with an extension to Pumpkin Patch called De-

void [Ringer et al. 2019b]. Devoid automates a class of changes not handled by the original

Pumpkin Patch that can be prohibitively difficult for proof engineers: extending a type (like a list)

to track a function (like its length) at the type level (like a length-indexed vector). These extended

types make it possible to rule out bad inputs (say, empty lists for a function that returns the first

element) at compile-time. Recent work in DTT studies this class of changes—called algebraic orna-
ments—from types like lists to types like vectors. I designed and implemented a transformation that

reuses proofs about types like lists to derive proofs about types like vectors—and so automatically

repairs proofs broken by changes that correspond to algebraic ornaments.

https://github.com/uwplse/analytics-data
https://github.com/uwplse/analytics-data/blob/master/changes/benchmarks.md
https://github.com/uwplse/coq-change-analytics
https://github.com/coq/coq/pull/8768
https://github.com/uwplse/ornamental-search
https://github.com/uwplse/ornamental-search


I later generalized this transformation to repair proofs broken by any kind of change that can

be described by an equivalence—not just algebraic ornaments, but also swapping and renaming

constructors, changing inductive structure, and more [Ringer et al. 2021]. To further improve

usability, I mentored a student building a decompiler that translates the transformed proof terms

into sequences of the tactics that proof engineers use for traditional proof automation. That way,

proof engineers can continue to maintain automatically repaired proofs.

We extended Pumpkin Patch with both this transformation and the decompiler. Pumpkin Patch

has since been used to support a benchmark from our user study, ease development with dependent

types, port functions and proofs between unary and binary numbers, and support the proof engineer

at Galois to write proofs and to interoperate between Coq and other verification tools more easily.

Other Work
The remainder ofmywork has focused onmethods for developing andmaintaining correct programs

using lighter-weight verification tools.

Program Analysis for Access Control. One alternative to verification using a proof assistant is

program analysis: automatically analyzing a program to determine some property of the program.

My work on AUDACIOUS [Ringer et al. 2016] combines program analysis with a secure library to

enforce a fine-grained permission model for mobile applications called user-driven access control
(UDAC). AUDACIOUS is implemented for Android and available on Github. It is the first approach

to UDAC that does not modify the OS.

Constraint Solvers for Test Input Generation. Another approach to checking program behavior

is to write unit tests. During a research internship at Amazon in 2016, I developed Iorek [Ringer
et al. 2017], a language and framework that helps software engineers generate test inputs. Iorek

uses a constraint solver to generate test inputs that are sufficiently different for the sake of testing.

Iorek increased test coverage in combination with a random testing tool, and helped identify bugs

in real services being developed at Amazon.

Future Directions: Proof Engineering for All
My long-term research vision is a future where verification is accessible to all programmers, not

just experts. I will address three increasingly broad audiences to bring this future to fruition: proof

engineering practitioners, software engineers, and potential users in other domains.

Proof Engineering for Practitioners. Reaching practitioners means making both writing and

maintaining proofs about programs much easier than the current state of the art. Automatic proof

reuse and repair tools have come a long way toward this end, but they still target experienced proof

engineers and require some manual effort. I plan to improve automation in order to make these

tools easier for non-experts to use. To achieve this, I will integrate proof reuse and repair tools

with e-graphs, a data structure that is used in constraint solvers and rewrite systems. Extending

and leveraging these data structures will make it possible to elegantly support reuse and repair

over large libraries when many changes occur at once, while imposing little additional effort on

the proof engineer. In addition, it will make it simple for any proof engineer to extend these tools

with optimizations, all while preserving correctness. The result will be proof reuse and repair tools

that can help less experienced proof engineers write and maintain proofs.

Proof Engineering for Software Engineers. Even with good proof engineering technologies, it is

not always economically feasible or even desirable to formally verify an entire system using a proof

assistant. The strong guarantees of a proof assistant may be necessary only for the most critical parts

of the system. Other techniques like testing, automated theorem proving, or program analysis may

better serve parts of the system. This makes a strong case formixed methods verification: verification
using multiple techniques while guaranteeing that their composition preserves correctness. I

advocated for this in Ringer et al. [2019a], and implemented one case of this at Galois: using

Pumpkin Patch to help a proof engineer interoperate between a constraint solver and Coq. I

plan to expand on this. The tools I build will, for example, interactively generalize test cases to

https://github.com/uwplse/ACGLib


specifications for use in a proof assistant. They will derive specifications and proofs from static

analyses, prompting the proof engineer for additional input as needed. They will compile between

solver-aided languages and proof assistants using a verified compiler, allowing for seamless and

proven integration of these tools. In all cases, they will compose with Pumpkin Patch to refine

specifications and fix proofs to make them more efficient or easier to reason about.

Proof Engineering for Domain Experts. Proof engineering technologies need new abstractions to

better reach certain domains. For example, verified machine learning and image processing tools

should encode and prove guarantees not just about the algorithms (like fairness), but also about the

data (like bias), or how they interact (like robustness). I plan to work with researchers outside of

programming languages to help them prove the properties about their systems that matter to them,

and in doing so, discover new abstractions and build new technologies that help other researchers

and programmers in those domains. These technologies will leverage my planned work on mixed

methods verification to use different verification techniques as appropriate.

Proof Engineering for All. Formal verification has the potential to help programmers of all skill

levels across many important domains build more secure and robust systems. I will continue to

drive the improvement of proof engineering technologies to realize this potential.

REFERENCES
Talia Ringer, Dan Grossman, and Franziska Roesner. 2016. AUDACIOUS: User-Driven Access Control with Unmodified

Operating Systems. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS
’16). 204–216. https://doi.org/10.1145/2976749.2978344

Talia Ringer, Dan Grossman, Daniel Schwartz-Narbonne, and Serdar Tasiran. 2017. A Solver-Aided Language for Test

Input Generation. Proc. ACM Program. Lang. 1, OOPSLA, Article 91 (Oct. 2017), 24 pages. https://doi.org/10.1145/3133915

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary Tatlock. 2019a. QED at Large: A Survey of

Engineering of Formally Verified Software. Foundations and Trends® in Programming Languages 5, 2-3 (2019), 102–281.
https://doi.org/10.1561/2500000045

Talia Ringer, RanDair Porter, Nathaniel Yazdani, John Leo, and Dan Grossman. 2021. Proof Repair Across Type Equivalences.

(2021). https://arxiv.org/abs/2010.00774 To appear in PLDI 2021.

Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner. 2020. REPLica: REPL Instrumentation for Coq Analysis.

In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2020). 99–113.
https://doi.org/10.1145/3372885.3373823

Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. 2018. Adapting Proof Automation to Adapt Proofs. In

Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2018). 115–129.
https://doi.org/10.1145/3167094

Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. 2019b. Ornaments for Proof Reuse in Coq. In 10th
International Conference on Interactive Theorem Proving (ITP 2019) (Leibniz International Proceedings in Informatics
(LIPIcs)), Vol. 141. 26:1–26:19. https://doi.org/10.4230/LIPIcs.ITP.2019.26

https://doi.org/10.1145/2976749.2978344
https://doi.org/10.1145/3133915
https://doi.org/10.1561/2500000045
https://arxiv.org/abs/2010.00774
https://doi.org/10.1145/3372885.3373823
https://doi.org/10.1145/3167094
https://doi.org/10.4230/LIPIcs.ITP.2019.26

	References

