
Towards Formally Verified Path ORAM in Coq
Hannah Leung, Talia Ringer, Christopher W. Fletcher

University of Illinois Urbana-Champaign
Urbana, Illinois, USA

Abstract
Oblivious RAM is a class of randomized algorithms that break
the association between a program’s memory access pattern
and that program’s data. Path Oblivious RAM is a specific
ORAM algorithm that is both theoretically interesting and
practically efficient. This abstract describes our plans to verify
Path ORAM in Coq, and discusses the design decisions and
tradeoffs involved.

1 Introduction
Suppose that you are storing your private data/program in
a remote untrusted server. Ideally, this data would remain
private. In theory, encryption schemes can help with this. In
practice, the server’s memory access patterns—the sequences
of memory locations that it visits—can betray your privacy,
leaking secret data.

For example, with the following code snippet, the attacker
can transmit the secret by dereferencing the pointer that points
to the value.

*secret = value ;

Oblivious RAM (ORAM) solves this data leakage problem by
constantly shuffling the contents of the (encrypted) memory
and (re)encrypting data as it is accessed. The security goal
is to make any two memory access patterns computationally
indistinguishable, which means that given any two access
patterns of the same length, there is a negligible probability
for a polynomial attacker to distinguish them better than
random guessing.

This abstract describes our plans to formally verify one im-
plementation of ORAM: Path ORAM [Stefanov et al. 2013].
It describes how Path ORAM works (Section 2), as well as
the key functional correctness and security properties we plan
to prove about it (Section 3). It concludes with a discussion
of the challenges we anticipate, in hopes to solicit feedback
from the proof engineering community (Section 4).

2 Path ORAM
The trivial ORAM scans memory to perform each access,
performing a linear amount of dummy work in the size of
the memory. This incurs too much overhead to be practical.
Modern ORAM algorithms seek to make the dummy work per
access poly logarithmic in the memory size, making ORAM
more practical.

Relative to other implementations of ORAM, Path ORAM
is simple and efficient, making it both useful and amenable to
verification. Path ORAM has a standard RAM interface – at

an abstract level, either read(address, size) or write(address,
data, size). However, we further abstract away the details and
give it a uniform interface – 𝐴𝑐𝑐𝑒𝑠𝑠 (𝑜𝑝, 𝑎𝑑𝑑𝑟, 𝑑𝑎𝑡𝑎∗).

The algorithm for Path ORAM takes as input an operation
(read or write), a block ID, new data, a position map, a stash,
and the memory. It modifies the memory and, if the operation
is “write,” it writes back the new data in the ORAM and
returns the old data associated with the block ID.

Path ORAM treats the memory on the remote server as a
binary tree (for simplicity, we assume it is a perfect binary
tree parameterized by its height ℓ). Each node (bucket), in the
tree has capacity for 𝑍 blocks, and each has the capacity for 𝐵
bits of data (the block size). The algorithm temporarily stores
some blocks in a client-side stash 𝑆 . It also maintains a map
from blocks to positions in the tree, called the position map.
P(𝑥, ℓ) denotes node along path from leaf node 𝑥 , at level ℓ .

For each memory access, Path ORAM maintains a key
invariant: at any time, the position map maps each block to a
uniformly random leaf node in the tree, and if the block does
not live in the stash, it is guaranteed to map to nodes along the
path to the mapped leaf node. When there is an access (e.g.,
reading a block from the server), the algorithm reads all the
nodes along the path into the stash, then assigns the block to
a different leaf node from a uniform distribution, then finally
writes back blocks from the stash back to the memory.

Algorithm 1 contains the pseudo code for the algorithm
(taken from the original Path ORAM paper [Stefanov et al.
2013]), which we walk through with a concrete example.

𝑁𝑜𝑑𝑒0

𝑁𝑜𝑑𝑒1

𝑁𝑜𝑑𝑒3 𝑁𝑜𝑑𝑒4

𝑁𝑜𝑑𝑒2

𝑁𝑜𝑑𝑒5 𝑁𝑜𝑑𝑒6

ℓ0

ℓ1

ℓ2

Imagine our remote server looks like the binary tree above,
and to begin with, each of the nodes contains no blocks. When
we issue a request 𝑎𝑐𝑐𝑒𝑠𝑠 (𝑜𝑝 = ‘𝑤𝑟”, 𝑎𝑑𝑑𝑟 = 11, 𝑑𝑎𝑡𝑎∗ =

“𝑑𝑎𝑡𝑎𝑁𝑒𝑤”) to the server, Line 1 reads the leaf that Block ID
𝑎 maps to in the position map. In the example, assume that
𝑏𝑙𝑜𝑐𝑘11 maps to 𝑁𝑜𝑑𝑒4 in the tree, then 𝑥 in 𝑃 (𝑥, ℓ) will be 4.
Line 2 remaps this block to another leaf node in the tree, e.g.,
to Node6, so we can assume it remaps to 𝑁𝑜𝑑𝑒6.

Line 4 reads all the blocks in each node along the path
determined by a given leaf node (𝑁𝑜𝑑𝑒4 in this case) into the
Stash 𝑆 . 𝑆 will contain all blocks in nodes 𝑁𝑜𝑑𝑒4, 𝑁𝑜𝑑𝑒1, and

https://orcid.org/0000-0002-0951-496X

Conference’17, July 2017, Washington, DC, USA Leung et al.

𝑁𝑜𝑑𝑒0. Line 8 updates the data associated block 𝑎 in 𝑆 . The
value of block 𝑎 will be updated to 𝑑𝑎𝑡𝑎𝑁𝑒𝑤 .

Lines 10 - 15 write back as many blocks as possible from
𝑆 to the remote server while upholding the placement invari-
ant. Starting at the leaf level, we find blocks that satisfy the
following criteria: at a given level ℓ , the node that a given
block maps to shares the same ancestor with the original leaf
node also at level ℓ (𝑁𝑜𝑑𝑒4 in this case). If another block also
maps to 𝑁𝑜𝑑𝑒4 at level ℓ2, then this block can be written back
to 𝑁𝑜𝑑𝑒4 if there is still space in the node. If another block
maps to 𝑁𝑜𝑑𝑒3, then the first possible node it can be written
to is 𝑁𝑜𝑑𝑒1 at ℓ1. If there is no space in 𝑁𝑜𝑑𝑒1, we come to
check ℓ0, 𝑁𝑜𝑑𝑒0 can take the block if there still is space left.

Blocks are kept in the stash iff there is no room in them
along any node from the root to their assigned leaf. In this
fashion, the stash can conceptually be thought of as an exten-
sion of the root node.

Algorithm 1 Access(op, addr, data*)
1: 𝑥 ← 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑎]
2: 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑎] ← 𝑈𝑛𝑖𝑓 𝑜𝑟𝑚𝑅𝑎𝑛𝑑𝑜𝑚 (0...2𝐿 − 1)
3: for ℓ ∈ {0, 1, ..., 𝐿} do
4: 𝑆 ← 𝑆 ∪ 𝑅𝑒𝑎𝑑𝐵𝑢𝑐𝑘𝑒𝑡 (P (𝑥, ℓ))
5: end for

6: data← Read block 𝑎 from S
7: if 𝑜𝑝 = 𝑤𝑟𝑖𝑡𝑒 then
8: 𝑆 ← (𝑆 − { (𝑎,𝑑𝑎𝑡𝑎) }) ∪ { (𝑎,𝑑𝑎𝑡𝑎∗) }
9: end if

10: for ℓ ∈ {𝐿, 𝐿 − 1, ..., 0} do
11: 𝑆 ′ ← {(𝑎′, 𝑑𝑎𝑡𝑎′) ∈ S :P(𝑥, ℓ) = P(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝑎′], ℓ) }
12: 𝑆 ′ ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑚𝑖𝑛 (|𝑆 ′ |, 𝑍) blocks from 𝑆 ′

13: 𝑆 ← 𝑆 − 𝑆 ′
14: 𝑊𝑟𝑖𝑡𝑒𝐵𝑢𝑐𝑘𝑒𝑡 (P (𝑥, ℓ), 𝑆 ′)
15: end for
16: return data

3 Verifying Path ORAM
We give the formal specification of the functional correctness
of Algorithm 1 and what it means for Path ORAM to be
secure.

Functional Correctness. We plan to verify that the ORAM
interface behaves like a RAM from the client’s perspective.
That is, an ORAM client read operation to some address 𝑎,
i.e., 𝑎𝑐𝑐𝑒𝑠𝑠 (“𝑟𝑑”, 𝑎,⊥), should return the data most recently
written to that address, i.e., through 𝑎𝑐𝑐𝑒𝑠𝑠 (“𝑤𝑟”, 𝑎, 𝑑𝑎𝑡𝑎).

Security. The key security property we plan to prove is that,
given any two client access patterns of the same length, there
is a negligible probability for the attacker to distinguish them.
This leaves no room for the attacker to learn the association of
physical locations and data on the server. Formally, let 𝐴(®𝑦)
denote the (possibly randomized) sequence of accesses to
the remote storage given the sequence of data requests ®𝑦. An
ORAM construction is said to be secure if (1) for any two data

request sequences ®𝑦 and ®𝑧 of the same length, their access
patterns 𝐴(®𝑦) and 𝐴(®𝑧) are computationally indistinguishable
by anyone but the client [Stefanov et al. 2013].

There are two possible ways to approach the proof of secu-
rity: (1) show the pseudo-code in Algorithm 1 is functionally
correct and guarantees that memory access patterns are com-
putationally indistinguishable, or (2) use traditional mathe-
matical complexity analysis to demonstrate that the stash 𝑆 ′𝑠
capacity is bounded to never exceed 𝑂 (log𝑁) blocks, where
𝑁 is the number of blocks stored in the ORAM tree. These
two approaches essentially prove the same thing, however,
they are complementary.

Proof Engineering. We are just getting started on the proof
engineering effort. Good proof engineering hinges on iden-
tifying the right invariants and lemmas. Along these lines,
we have started by writing an informal implementation1 in
Python, breaking down the code into units that correspond to
lemmas and invariants that we anticipate needing. We expect
this to make the code more amenable to verification when
we move to formal proof. Python modeling has served us
in many ways. For example, doing it right in Python helps
us with building a comprehensive understanding of the nitty-
gritty details of the Path ORAM algorithm. It also helps us
with rapid testing of functions and fast prototyping of Algo-
rithm 1.

Some of the invariants and lemmas that we plan to prove
come from the Path ORAM paper. For example, the paper
states a system invariant: at any time, each block should be
mapped to a leaf node, and unstashed blocks should always
be placed in a node along the path from the mapped leaf to
the root node. The paper also identifies some lemmas, like the
bounded stash size lemma: the size of the stash 𝑆 should be at
most 𝑂 log(𝑁), with 𝑁 denoting the total number of blocks.

We are also identifying other invariants and lemmas that
we anticipate helping us. Building the Python model in an
interactive playground gives us opportunity to spot these inter-
mediate invariants, which corresponds to the form of lemmas
and theorems in Coq. Throughout our informal development
process, we are generalizing our unit tests into parameterized
tests, then documenting natural language invariants, which
we hope to later formalize. We also anticipate making heavy
use of tree lemmas to simplify the proof effort, since the Path
ORAM algorithm makes heavy use of tree algorithms. We
appreciate feedback on other invariants and lemmas that may
help us prove these theorems, and on how to best state our
theorems to reduce the overall proof engineering effort.

4 Next Steps
As we move to a formally verified implementation in Coq,
we hope to solicit feedback from the proof engineering com-
munity on four important challenges we foresee:

1https://github.com/PalindromeLeung/PathORAM

Towards Formally Verified Path ORAM in Coq Conference’17, July 2017, Washington, DC, USA

Proving complexity. Several of the informal proofs rely on
complexity results. We are aware of one framework that may
help us with verifying complexity in Coq [McCarthy et al.
2018], but we know that verification of intensional properties
is challenging. Should we prove the complexity results in
Coq, or push them out to traditional complexity analysis?
And how can we make it easy to change our minds?

Proof reuse. We would prefer to reuse existing libraries
and frameworks when possible and to build something that is
itself reusable. What libraries and frameworks should we use?
And what libraries and frameworks may we wish to build
ourselves that may prove useful for other proof engineers?

Reasoning with probability. Our definition of security re-
lies heavily on computational indistinguishability, or equiva-
lently, the probability distribution at its core. Prior work on
building libraries and frameworks, such as The Foundational
Cryptography Framework [Petcher and Morrisett 2015] and
Formal Certification of Code-Based Cryptographic Proofs
[Barthe et al. 2009] for reasoning about probabilities in Coq
can be adopted to build infrastructure toward this verification
work. Work on embedding probabilistic oblivious compu-
tation in lambda calculus not only allow reasoning about
deterministic programs but also probabilistic ones [Darais
et al. 2020]. SSProve [Haselwarter et al. 2021] is another
thread of work that is equipped with a probabilistic relational
program logic for formalizing low-level details of construct-
ing game-based cryptographic proofs in Coq, which might
give us insights on how to reason with probability in Coq.
Other work [Barthe et al. 2019] enhanced separation logic
with probabilistic reasoning and demonstrated how this logic
system applied to Oblivious RAM. How do we tackle the chal-
lenge of reasoning with probability specifically in the context
of proving security properties of Path ORAM? How much
could we generalize it for it to be useful for other security
verification work?

Verified hardware. We would eventually like to verify not
just the Path ORAM algorithm, but a hardware implementa-
tion in RTL. What is the best way to accomplish this? How do
we ensure that what we get is performant? Will prior work for
verification of hardware in Coq (like Kami [Choi et al. 2017])
help us with this? And what design principles can we use to
make it easier to start by verifying just the algorithm, and then
incrementally move toward performant, verified hardware?

Our talk will solicit feedback on these four challenges, share
our progress on the verification effort over the upcoming
months, and open the floor for discussion.

References

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. For-
mal Certification of Code-Based Cryptographic Proofs. In Proceedings
of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (Savannah, GA, USA) (POPL ’09). As-
sociation for Computing Machinery, New York, NY, USA, 90–101.
https://doi.org/10.1145/1480881.1480894

Gilles Barthe, Justin Hsu, and Kevin Liao. 2019. A Probabilistic Separation
Logic. Proc. ACM Program. Lang. 4, POPL, Article 55 (dec 2019),
30 pages. https://doi.org/10.1145/3371123

Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam
Chlipala, and Arvind. 2017. Kami: A Platform for High-Level Paramet-
ric Hardware Specification and its Modular Verification. In ICFP’17:
Proceedings of the 22nd ACM SIGPLAN International Conference
on Functional Programming. http://adam.chlipala.net/papers/
KamiICFP17/

David Darais, Ian Sweet, Chang Liu, and Michael Hicks. 2020. A Language
for Probabilistically Oblivious Computation. In Proceedings of the ACM
Conference on Principles of Programming Languages (POPL).

Philipp G. Haselwarter, Exequiel Rivas, Antoine Van Muylder, Théo Winter-
halter, Carmine Abate, Nikolaj Sidorenco, Catalin Hritcu, Kenji Maillard,
and Bas Spitters. 2021. SSProve: A Foundational Framework for Modular
Cryptographic Proofs in Coq. Cryptology ePrint Archive, Paper 2021/397.
https://eprint.iacr.org/2021/397 https://eprint.iacr.org/2021/397.

Jay McCarthy, Burke Fetscher, Max S. New, Daniel Feltey, and Robert Bruce
Findler. 2018. A Coq library for internal verification of running-times.
Science of Computer Programming 164 (2018), 49–65. https://doi.org/
10.1016/j.scico.2017.05.001 Special issue of selected papers from
FLOPS 2016.

Adam Petcher and Greg Morrisett. 2015. The Foundational Cryptography
Framework. In Principles of Security and Trust, Riccardo Focardi and
Andrew Myers (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
53–72.

Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. 2013. Path O-RAM: An Extremely
Simple Oblivious RAM Protocol. In Proceedings of the 2013 ACM
SIGSAC conference on Computer and communications security (CCS
’13) (2013).

https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1145/3371123
http://adam.chlipala.net/papers/KamiICFP17/
http://adam.chlipala.net/papers/KamiICFP17/
https://eprint.iacr.org/2021/397
https://eprint.iacr.org/2021/397
https://doi.org/10.1016/j.scico.2017.05.001
https://doi.org/10.1016/j.scico.2017.05.001

	Abstract
	1 Introduction
	2 Path ORAM
	3 Verifying Path ORAM
	4 Next Steps
	References

