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Abstract11

Guaranteeing correct compilation is nearly synonymous with compiler verification. However, the12

correctness guarantees for certified compilers and translation validation can be stronger than we13

need. While many compilers do have incorrect behavior, even when a compiler bug occurs it may14

not change the program’s behavior meaningfully with respect to its specification. Many real-world15

specifications are necessarily partial in that they do not completely specify all of a program’s behavior.16

While compiler verification and formal methods have had great success for safety-critical systems,17

there are magnitudes more code, such as math libraries, compiled with incorrect compilers, that18

would benefit from a guarantee of its partial specification.19

This paper explores a technique to get guarantees about compiled programs even in the presence20

of an unverified, or even incorrect, compiler. Our workflow compiles programs, specifications, and21

proof objects, from an embedded source language and logic to an embedded target language and22

logic. We implement two simple imperative languages, each with its own Hoare-style program logic,23

and a system for instantiating proof compilers out of compilers between these two languages that24

fulfill certain equational conditions in Coq. We instantiate our system on four compilers: one that is25

incomplete, two that are incorrect, and one that is correct but unverified. We use these instances to26

compile Hoare proofs for several programs, and we are able to leverage compiled proofs to assist27

in proofs of larger programs. Our proof compiler system is formally proven sound in Coq. We28

demonstrate how our approach enables strong target program guarantees even in the presence of29

incorrect compilation, opening up new options for which proof burdens one might shoulder instead30

of, or in addition to, compiler correctness.31

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of32

computation → Hoare logic; Software and its engineering → Compilers33

Keywords and phrases proof transformations, compiler validation, program logics, proof engineering34

Digital Object Identifier 10.4230/LIPIcs.ITP.2024.2835

Supplementary Material Software (Source Code): https://zenodo.org/records/1149025236

Funding This research was developed with funding from the Defense Advanced Research Projects37

Agency. The views, opinions, and/or findings expressed are those of the author(s) and should not be38

interpreted as representing the official views or policies of the Department of Defense or the U.S.39

Government.40

Acknowledgements We thank the Coq team for their proof engineering advice. We thank Guilherme41

Espada, John Leo, Pedro Amorim, Sophia Roshal, and Zachary Tatlock for their paper feedback.42

* Co-first authors

© Audrey Seo, Chris Lam, Dan Grossman, and Talia Ringer;
licensed under Creative Commons License CC-BY 4.0

15th International Conference on Interactive Theorem Proving (ITP 2024).
Editors: Yves Bertot, Temur Kutsia, and Michael Norrish; Article No. 28; pp. 28:1–28:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alseo@cs.washington.edu
https://orcid.org/0000-0003-2928-3721
mailto:lam30@illinois.edu
https://orcid.org/0009-0008-5946-9643
mailto:djg@cs.washington.edu
https://orcid.org/0009-0005-2111-1900
mailto:tringer@illinois.edu
https://orcid.org/0000-0003-1854-3321
https://doi.org/10.4230/LIPIcs.ITP.2024.28
https://zenodo.org/records/11490252
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


28:2 Correctly Compiling Proofs About Programs Without Proving Compilers Correct

1 Introduction43

Program logic systems help proof engineers do more advanced reasoning about program-44

specific properties. Iris [18, 24], VST [8], CHL [11], and Sepref [27] are just a few examples45

of such program logics. Traditionally, strong guarantees for compiled programs required com-46

posing program logics with verified compilers [8]. However, because functional specifications47

are often partial, preserving them through compilation sometimes does not require a correct48

compiler pass, much less global compiler correctness.49

To see an example of where correct compilation becomes too strict, consider a Hoare triple50 {
0 ≤ a ∧ 0 ≤ ϵ

}
y := 42; x := source_sqrt(a)

{
|a − x2| ≤ ϵ

}
, which says that after setting51

y to 42 and calling source_sqrt on a, the variable x stores a square root approximation of52

a within ϵ. Suppose that source_sqrt is compiled to some program target_sqrt such that53

if 0 ≤ a ∧ 0 ≤ ϵ, then after target_sqrt(a) runs, we have |a − x2| ≤ ϵ
2 . In the end, we still54

have |a − x2| ≤ ϵ for target_sqrt since ϵ
2 ≤ ϵ, which meets the specification. Moreover, the55

42 on the right-hand side of the assignment to y could be (mis)compiled to anything, and56

the specification would still be preserved. However, this compilation would be rejected by57

both certified compilation and translation validation, illustrating that compiler correctness is58

significantly more restrictive than specification preservation.59

In order to achieve guaranteed specification-preserving compiler passes, we present the60

proof compiler system PotPie. PotPie takes an existing compiler and produces a proof61

compiler. A proof compiler takes a program, a specification, and a proof of the specification62

and compiles all three such that (1) the specification’s meaning is preserved, and (2) the63

compiled proof shows that the compiled program meets the compiled specification.64

PotPie is formally verified in Coq [44], and allows for partial specification-preserving65

compilation, even of incorrectly compiled programs. To get a sense of how PotPie differs66

from similar techniques, imagine a proof engineer has already shown the Hoare triple67

{0 ≤ a ∧ 0 ≤ ϵ}x := source_sqrt(a){|x2 − a| ≤ ϵ} and wants to prove an analogous Hoare68

triple about the compiled square root approximation. Suppose also that the proof engineer69

has a compiler T on hand, which happens to have a small bug that switches < to ≤ in70

programs and specifications. The square root program uses a while loop to approximate71

square roots, and the while loop condition contains at least one <. At this point, PotPie72

provides two options:73

1. Tree workflow: use T to instantiate a proof tree compiler that produces a target proof74

tree. After compiling the square root Hoare tree, they invoke the Tree Coq plugin which75

will check the proof tree, and if possible, produce a certificate that is checkable in Coq.76

Tree has only one proof obligation to invoke the plugin, but may fail in certain cases.77

2. CC workflow: use T to instantiate a correct-by-construction proof compiler by showing78

that it satisfies the equations in Figure 5 on Page 8. To call this proof compiler, the proof79

engineer must show that the square root program is well-formed. CC is complete in that80

if the translation preserves the specification, then it is possible to perform.81

Both methods work, even though the compiler T has a bug that causes miscompilation82

in the square root program. Because of this miscompilation, we cannot use translation83

validation, the state of the art for ensuring correct compilation for an unverified compiler.84

But the miscompilation does not affect our specification, so with PotPie, we can get strong85

guarantees about our compiled code regardless of miscompilation.86

We make the following contributions:87

1. We present the PotPie system for specification-preserving proof compilation.88

2. We describe two workflows for the PotPie system: CC and Tree.89
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a ::= N | x | param k | a + a | a − a | f(a, . . . , a)
b ::= T | F | ¬b | a ≤ a | b ∧ b | b ∨ b

i ::= skip | x := a | i; i

| if b then i else i | while b do i

λ ::= (f, k, i, return x)
p ::= ({λ, . . . , λ}, i)

a ::= N | #k | a + a | a − a | f(a, . . . , a)
b ::= T | F | ¬b | a ≤ a | b ∧ b | b ∨ b

i ::= skip | push | pop | #k := a | i; i

| if b then i else i | while b do i

λ ::= (f, k, i, return a n)
p ::= ({λ, . . . , λ}, i})

Figure 1 Imp (left) and Stack (right) syntax, where a describes arithmetic expressions, b boolean
expressions, i imperative statements, λ function definitions, and p whole programs, which consist of
a set of functions and a “main” body. The evaluation of the main body yields the result of program.
For Imp functions, (f ,k,i,return x) is a function named f with k parameters that returns the value
of the variable x after executing the function body, i. For Stack functions (f, k, i, return a n), we
return the result of evaluating a after executing the body i, and then pop n indices from the stack.

3. We demonstrate PotPie on several case studies, using code compilers with varying90

degrees of incorrectness to correctly compile proofs. Our case studies include various91

mathematical functions, such as infinite series and square root approximation.92

4. We prove the CC and Tree workflows sound in Coq.93

Non-Goals and Limitations Our work aims to complement, not replace, certified compilation.94

One potential motivation for alternative compiler correctness techniques is to ease the burden95

of compiler verification. However, easing the burden of compiler verification is not our96

goal, nor do we think that this is the case for our work at this time. Rather, our goal is97

demonstrate a complementary approach of specification-preserving compilation for program-98

specific specifications, even when the program itself is incorrectly compiled. Our work99

currently focuses on simple and closely related languages, and the compilers are likewise100

simple, though we do not believe that these choices are central to our approach. Currently,101

our work imposes significant limitations the kinds of control flow optimizations that can be102

performed. This simplifying decision made the problem initially tractable, but we do not103

believe it is inherent to our approach; we discuss a potential way of handling it in Section 7.104

2 Programs, Specifications, and Proofs105

In this section, we briefly present our six languages and how to compile programs and106

specifications, with Section 2.1 describing the programming languages and program compiler,107

Section 2.2 describing the specification languages and compiler, and Section 2.3 describing the108

proof languages (the proof compiler system is described in Section 3). Here and throughout109

the paper, we include links such as 42 to relevant locations in our code, which you can find110

on GitHub: https://github.com/uwplse/potpie/tree/v0.4.111

2.1 Programs112

Our languages Imp and Stack are both simple imperative languages that are similar in113

syntax (Figure 1) yet have differing memory models. Imp has an abstract environment114

with two components: a mapping of identifiers to their nat values, and function parameters115

(accessed via the param k construct), whereas Stack has a single function call stack, where116

new variables are pushed to the low indices and stack indices are accessed with the #k117

construct. Function calls in Imp are always mutation-free since functions are limited to their118

(immutable) parameters and local scope. Stack’s functions can access the entire stack.119

ITP 2024
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compφ
a (n) ≜ n compφ

a (x) ≜ #φ(x)
compφ

a (param k) ≜ #(|V | + k + 1)
compφ

a (a1 op a2) ≜ compφ
a (a1) op compφ

a (a2)
compφ

a (f(a1, . . . , an)) ≜ f(compφ
a (a1), . . . , compφ

a (an))

compφ
b (T ) ≜ T compφ

b (F ) ≜ F

compφ
b (¬b) ≜ ¬compφ

b (b)
compφ

b (b1 op b2) ≜ compφ
b (b2) op compφ

b (b2)
compφ

b (a1 ≤ a2) ≜ compφ
a (a1) ≤ compφ

a (a2)
Figure 2 An arithmetic expression compiler compa (left) and a boolean expression compiler

compb (right). op stands for the appropriate binary operators: + and −, and ∧ and ∨, respectively

M ::= T | F | pn [e, . . . , e]
| M ∧ M | M ∨ M σ ⊨ T

True
map_evalσ [ai]n1 [vi]n1 pn vlist

σ ⊨ pn [a1, . . . , an]
N-ary

Figure 3 Syntax (left) and semantics (right) for base assertions for both Imp and Stack.
map_evalσ is a relation from lists of expressions to lists of values. The semantic interpretation is
parametric over the types of v, σ, and map_evalσ. Interpretations for ∧ and ∨ are standard.

Bridging the Abstraction Gap The difference in memory model must be taken into account120

when compiling from Imp to Stack. We define an equivalence between variable environments121

and stacks 4 so that “sound translation” is a well-defined concept.122

▶ Definition 1. Let V be a finite set of variable names, and let φ : V → {1, . . . , |V |} be123

bijective with inverse φ−1. Then for all variable stores σ, parameter stores ∆, and stacks σs,124

we say that σ and ∆ are φ-equivalent to σs, written (σ, ∆) ≈φ σs, if (1) for 1 ≤ i ≤ |V |, we125

have σs[i] = σ(φ−1(i)), and (2) for |V | + 1 ≤ i ≤ |V | + |∆|, we have σs[i] = ∆ [i − |V |].126

This equivalence is entirely dependent on our choice of mapping between variables and stack127

slots. It has this form since parameters are always at the top of the stack at the beginning128

of a function call, and are then pushed down as space for local variables is allocated, so129

parameters appear “after” (i.e., appended to) the local variables. Note that this implies130

|V | + |∆| ≤ |σs| while saying nothing about stack indices beyond |V | + |∆|.131

Compiling Programs Although the PotPie system allows for some choice of compiler132

between Imp and Stack, most of our compilers follow a common structure. We give a133

translation for Imp arithmetic and boolean expressions (which we will refer to in sum as134

expressions from now on) in Figure 2. This infrastructure is a straightforward extension of135

the variable mapping function φ from Definition 1. The program compilers we deal with in136

our case studies (Section 4) define variations on this common structure.137

2.2 Specifications138

The specification languages both embed Imp or Stack expressions inside of them, respectively.139

Base assertions are modeled as n-ary predicates over the arithmetic and boolean expressions140

of the given language. The semantics for assigning a truth value to a formula (Figure 3,141

right) parameterize predicates over the value types. For example, if we have the assertion142

p1 a where a is an Imp expression that evaluates to v, then p1 a is true if and only if calling143

the Coq definition of p1 with v is a true Prop. We can define a program logic S for the144

source language this way by using the atoms in Figure 3 to embed arithmetic and boolean145

expressions in Coq propositions. We add conjunction and disjunction connectives at the146

logic level. We can define T for the target language similarly. We then use this to construct147

the following specification grammars:148

S ::= Se | S1 ∧ S2 | S1 ∨ S2 T ::= (n, Te) | T1 ∧ T2 | T1 ∨ T2 (1)149

https://uwplse.org/potpie/docs/Imp_LangTrick.SpecCompiler.LogicTranslationBase.html#state_to_stack
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compφ,k
spec(T ) ≜ (k, T )

compφ,k
spec(F ) ≜ (k, F )

compφ,k
spec(pn (e1, . . . , en)) ≜ (k, pn (compφ

expr(e1), . . . , compφ
expr(en)))

compφ,k
spec(S1 op S2) ≜ compφ,k

spec(S1) op compφ,k
spec(S2)

Figure 4 The specification compiler compφ,k
spec(S), which is parameterized over compφ

expr (which
can be either compφ

a or compφ
b , depending on the type of expressions e). op is either ∧ or ∨.

where Se and Te are instances of the logic described in Figure 3 using Imp and Stack150

arithmetic and boolean expressions respectively.151

Because the minimum stack size required by the compilation might not be captured by
language expressions contained within the formula itself, we also want to specify a minimum
stack size in Stack specifications. This is represented by the following judgment:

|σ| ≥ n σ ⊨ Te

σ ⊨ (n, Te)
Stack Base

We made the decision to allow function calls within specifications. This is not essential to152

our approach—one could disallow effectful constructs from expressions as in CLight [6]. For153

the current system, we find it more natural to reason about effectful expressions in Imp.154

Compiling Specifications We can reuse φ : V → {1, . . . , |V |} and the expression compilers155

from Section 2.1 to define a specification compiler (see Figure 4): recurse over the source156

logic formula and compile the leaves, i.e., Imp expressions. If k is the number of function157

arguments, give each assertion a minimal stack size, |V | + k, to ensure well-formedness of the158

resulting Stack expressions within the specification, which is given as the maximum value159

of φ plus k, where k is the number of arguments. Note that this definition is parameterized160

over an expression compiler, which need not be fully correct. To guarantee correctness of a161

translated proof in the sense that the target proof “proves the same thing”, users must show162

that the specification compiler must be sound with respect to the user’s source specification163

(see Definition 3 and Section 3.2.2). This ensures that the compiled proof proves an analogous164

property even when the program is compiled incorrectly.165

2.3 Proofs166

Our logics are based on standard Hoare logic and are proven sound in Coq. Automatically167

ensuring that the rule of consequence’s implications are preserved by compilation would168

usually require correctness of compilation. To remove this requirement, we modify the rule169

of consequence so that implications must be in an implication database I, which is a list of170

pairs of specifications that satisfy the following definition:171

▶ Definition 2. I is valid if for each pair (P, Q) in I, ∀σ, σ ⊨ P ⇒ σ ⊨ Q.172

This implication database, which is present for both Imp and Stack, serves to (1) identify173

which implications must be preserved through compilation, and (2) make it easy to identify174

which source implication corresponds to which target implication across compilation. For the175

Stack logic, as a simplifying assumption, we further require all expressions in assignments,176

if conditions, or while conditions to be side effect-free, i.e., preserve the stack.177

3 Compiling Proofs178

PotPie’s two workflows share the same goal: to produce a term at the target representing179

a proof tree for the desired Stack-level property. To achieve this, both workflows have180

ITP 2024



28:6 Correctly Compiling Proofs About Programs Without Proving Compilers Correct

Table 1 Proof obligations and their relationship to the requirements for instantiating and invoking
proof compilers (PC) for each of our workflows, and what properties may be guaranteed for Tree by
these proof obligations. P means a user proof is required, A means that the plugin will attempt an
automated check, × means the condition is not required, and - means the condition is not applicable
to that column. “Trees WF” means the compiled code and assertions within the Stack Hoare tree
have the right syntactic shape for Hoare rule application. “Valid Tree” means that the tree is a
valid Stack Hoare proof (which is implied by a typechecked certificate). “CGC” indicates what is
needed to ensure that once a certificate is generated and typechecks, that it is correct, i.e., preserves
the meaning of the pre and postcondition. Since CC is correct-by-construction, all of the proof
obligations are required.

Tree CC
Create Invoke Guaranteeing Properties Create PC Invoke PCPC PC Plugin Trees WF Valid Tree CGC

Comp. Comm. × - - A A - P -

User

Spec DB - × P × P - - P
Pre/Post - × × × × P - P
Imp WF - × × - - - - P
preservesStack - × × A A - - P

their own soundness theorems (Section 3.1), which need certain properties to be true of181

compiled programs and specifications. The workflows obtain these in different ways. Before182

being called, CC requires the user to prove certain equational properties about the compiler183

(Section 3.2.1) and well-formedness properties of the source program and proof (Section 3.2.3),184

and combines these to acquire the required syntactic and stack-preserving conditions for185

applying Stack Hoare rules. Tree simply compiles the Hoare proof tree, and its plugin186

performs an automated check (that can possibly fail) of whether the compiled tree is a187

valid Hoare proof. Additionally, both workflows require the user to manually translate the188

implication databases (Section 3.2.2) to retrieve Stack-level rule-of-consequence applications.189

A breakdown of which proof obligations are required for which workflow and the guarantees190

they provide can be found in Table 1. None of these proof obligations require full semantic191

preservation; they allow for some miscompilation of programs as long as compilation does192

not break the (possibly partial) specification.193

3.1 Soundness Theorems and Overview194

Consider the Imp Hoare triple {5 < 10}x := 5{x < 10}, which can be derived via a simple195

application of the Imp-level assignment rule. If we map x to stack slot #1, the “natural”196

translation of this Imp triple is the Stack triple {5 < 10}#1 := 5{#1 < 10}, which can197

be derived via Stack’s assignment Hoare rule. This translation seems “natural” for two198

reasons: it is derived using the “same” rules, and it is proving the “same” thing. We use199

the former to compile the proofs, and we use the latter to define a notion of soundness for200

specification translation 30 31 , which each workflow can guarantee in a different way:201

▶ Definition 3. For a given P , a specification compilation function compφ,k
spec is sound with202

respect to P if for all σ, ∆, σs such that (σ, ∆) ≈φ σs, we have σ, ∆ |= P ⇔ σs |= compφ,k
spec(P ).203

We can also define an informal notion of soundness for a proof compiler:204

▶ Definition 4. Given an Imp Hoare proof pf that proves the triple {P}c{Q}, a proof205

compiler PC is sound with regards to it if PC(pf) = pf ′ and pf ′ proves the triple206

{compspec(P )}compcode(c){compspec(Q)}.207

Combining both notions of soundness lets us arrive at our definition of soundness for a proof208

compiler : if a specification and proof compiler are sound with regards to a specification and209

https://uwplse.org/potpie/docs/Imp_LangTrick.ProofCompiler.ProofCompCodeCompAgnosticMod.html#ProgramProofCompilationType.pre_sound
https://uwplse.org/potpie/docs/Imp_LangTrick.ProofCompiler.ProofCompCodeCompAgnosticMod.html#ProgramProofCompilationType.post_sound
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proof in the sense of Definitions 3 and 4, then the compiled version of that proof is both210

a valid proof at the target and proves the same thing that the source proof proved. The211

Tree workflow can achieve these guarantees in piecewise progression when certain proof212

obligations are met, and CC always guarantees both when it is called. The form Definition 4213

takes in our implementation is a method of constructing a term of type hl_stk (the Stack214

correct-by-construction Hoare proof type) from a term of type hl_Imp_Lang.215

Tree Proof Compiler The Tree workflow utilizes a proof compiler that separates proof216

and compilation, and has two components: a compiler that produces a proof tree 2 and a217

Coq plugin, implemented in OCaml 5 , that checks the proof tree’s validity 6 . The compiler218

is parameterized over the code and specification compilers from Imp to Stack. The proof219

tree compiler component is sound in the sense that if the proof obligations for the CC proof220

compiler are satisfied, then it will always produce a sound tree 12 . The plugin can be used221

on any Stack proof tree and can optionally produce a certificate, which can be used to222

produce a Stack Hoare logic proof via this theorem 13 :223

1 Theorem valid_tree_can_construct_hl_stk
2 (P Q: AbsState) (i: imp_stack) (facts': implication_env_stk)
3 (fenv': fun_env_stk) (T: stk_hoare_tree):
4 ∀ (V: stk_valid_tree P i Q facts' fenv' T), (* certificate type*)
5 hl_stk P i Q facts' fenv'.

An instance of Definition 4 can be retrieved by an appropriate substitution of variables.224

We note that Tree is not complete: the requisite target-level properties could be true,225

and yet Tree will still fail. This can occur in the case of mutually recursive functions,226

along with some edge cases that we talk more about in Section 5.1. While Tree requires227

fewer proof obligations, it also provides fewer guarantees. One such guarantee it lacks is228

preservation of the pre and postcondition, i.e., specification-preserving compilation. This229

and other guarantees can be gained by showing the proof obligations indicated in Table 1.230

CC Proof Compiler This workflow is correct by construction. Given an Imp Hoare proof231

(hl_Imp_Lang) along with the CC proof obligations (described in Section 3.2), CC produces a232

Stack Hoare proof (hl_stk) of the same property 1 (some detail is omitted for brevity):233

1 Definition proof_compiler :
2 ∀ (P Q: AbsEnv) (i: imp_Imp_Lang) (fenv: fun_env) (facts: implication_env)
3 (var_to_stack_map: list string) (num_args: nat)
4 (proof: hl_Imp_Lang P i Q facts fenv) (translate_facts: valid_imp_trans_def),
5 (* well-formedness conditions and specification translation soundness *) →
6 hl_stk (comp P) (comp i) (comp Q) (comp facts) (comp fenv).

Since the CC proof compiler is correct-by-construction, the type signature in the above Coq234

code guarantees the validity of the produced target Hoare proof. However, as compared235

to Tree, CC requires far more proof obligations before a CC proof compiler can even be236

instantiated, with invocation requiring several on top of the instantiation burden.237

3.2 Proof Obligations238

PotPie’s workflows both require some proof obligations in order to get target-level correctness239

guarantees. Table 1 breaks down these requirements for both workflows.240

ITP 2024
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compφ,k
spec(P [x → a]) = (compφ,k

spec(P ))[φ(x) → compφ
a (a)] (2)

compφ,k
spec((p1 [b]) ∧ P ) =

(
k + |V |, (p1 [compφ

b (b)]) ∧ compφ,k
spec(P )

)
(3)

compφ,k
code(x := a) = #φ(x) := compφ

a (a) (4)
compφ,k

code(skip) = skip (5)
compφ,k

code(i1; i2) = compφ,k
code(i1); compφ,k

code(i2) (6)
compφ,k

code(if b then i1 else i2) = if compφ
b (b) then compφ,k

code(i1) else compφ,k
code(i2) (7)

compφ,k
code(while b do i) = while compφ

b (b) do compφ,k
code(i) (8)

Figure 5 Equations compilers must satisfy to be used to instantiate a proof compiler.

3.2.1 Commutativity Equations – CC Only241

These code and specification compiler proof obligations relate the compiled programs and
specifications. CC requires that proof-compilable Imp programs and specifications satisfy the
equations in Figure 5—Tree has no such requirement (Table 1) and will simply fail if these
equations don’t hold. For example, consider the substitution performed by the assignment
rule. Given some P , in order to compile an application of the assignment rule, we want (2)
to hold. If we have this equality, we have the following, where P ′ = compφ,k

spec(P ):

compφ,k
pf ({P [x → a]} x := a {P}) =

{
P ′[φ(x) → compφ,k

code(a)]
}

φ(x):= a
{

P ′
}

This compiler proof obligation lets a CC proof compiler mechanically apply the Hoare rules.242

In practice, as long as the program compilers are executable, these conditions are provable243

using reflexivity. These equations are the reason for the control-flow restrictions mentioned244

in the introduction and in Section 7. These equations also ensure that the specification245

compiler is “aware” of the way that expressions are compiled. For example, consider a code246

compiler that adds 1 to assignment statements’ right hand sides. This breaks the compilation247

of the assignment rule, as the specification compiler is “unaware” of a transformation that248

affects a Hoare rule application. Equations 2-4 and 7-8 in Figure 5 are to prevent such cases.249

3.2.2 Specification Translation Conditions – Tree & CC250

As we described in Section 2.3, the rule of consequence is the only Hoare rule that depends251

on the semantics of the program, and thus would require a completely correct compiler pass252

to completely automate. Our solution is to have the user specify which implications they253

are using in their Hoare proof in an implication database. Then the user proves that these254

implications are compiled soundly 7 (this is the “Spec DB” proof obligation in Table 1):255

▶ Definition 5. Given φ, k, and a function environment, an Imp implication P ⇒ Q has a256

valid translation if for all σ, ∆, σs, if (σ, ∆) ≈φ σs, then σs |= compφ,k
spec(P ) ⇒ compφ,k

spec(Q).257

While it lets us construct a proof in the target about the compiled program, it does not258

necessarily construct a proof of the same property, as the meaning of the precondition and259

postcondition could be destroyed by, for instance, compiling them both to ⊥.260

To prevent this, another proof obligation is to prove the pre/postcondition of the Imp261

Hoare proof sound with regards to the specification compiler (Definition 3). This guarantees262

that while program behavior can change, the specification remains the same. This is in263

Table 1 as the “Pre/Post” row. While it is required by CC, it is optional for Tree but is264

needed to guarantee correctness of a certificate, hence the P in the CGC column of Table 1.265

These conditions only need for compilation to preserve Definitions 3 and 5 and require266

no proofs of language-wide properties, nor of full compiler correctness. Rather, they require267

https://uwplse.org/potpie/docs/Imp_LangTrick.ProofCompiler.ProofCompilableCodeCompiler.html#ValidImplicationTranslation.valid_imp_trans_def
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specific correctness properties for a finite set of assertions. In practice, we have found these268

proofs to be repetitive, and have built some tactics to solve these goals 28 29 . We have269

not built proof automation to generate a given proof’s implication database as a verification270

condition but we suspect this could be done via a weakest precondition calculation.271

3.2.3 Well-formedness Conditions – CC Only272

The last set of user proof obligations is specific to our choice of languages and logics.273

Specifically, while the syntax of Imp prevents most type errors, there are other ways a274

program can be malformed, e.g., calling a function with an incorrect number of arguments.275

These obligations show that all components of the source proof be well-formed. Additionally,276

any compiled functions should preserve the stack, so as to meet the preservesStack condition277

of the Stack logic. We have largely automated these proof burdens in our case studies.278

4 Case Studies279

We have two sets of case studies that highlight the trade-offs of the PotPie framework:280

1. Partial Correctness with Incorrect Compilation (Section 4.1): We prove meaningful281

partial correctness properties of arithmetic approximation functions that are slightly282

incorrectly compiled. This set of case studies highlights two benefits of PotPie:283

a. Specification-Preserving Compilation: We invoke PotPie with a slightly buggy284

program compiler to produce proofs that meaningfully preserve the correctness specifi-285

cations down to the target level. Importantly, we obtain these meaningful target-level286

correctness proofs of our specification even though the program compiler does not287

preserve the full semantic behavior of the arithmetic approximation functions.288

b. Compositional Proof Compilation. We use PotPie to separately compile the289

correctness proofs of helper functions common to both approximation functions. Com-290

position of those helper proofs within the target-level proof of the arithmetic function291

comes essentially “for free,” modulo termination conditions.292

2. PotPie Three Ways (Section 4.2): We instantiate PotPie with three different variants293

of a program compiler (incomplete, incorrect, and correct but unverified), and294

briefly explore the trade-offs of each of these instantiations.295

4.1 Partial Correctness with Incorrect Compilation296

We have written and proven correct two mathematics approximation programs in Imp.297

Both approximation programs use common helper functions, which we also prove correct298

(Section 4.1.1). We then build on and compose the helper proofs to prove our approximation299

programs correct up to specification even in the face of incorrect compilation (Sections 4.1.2300

and 4.1.3). Our incorrect compiler has the following bug, miscompiling < to ≤:301

compφ
badb(a1 < a2) ≜ compφ

a(a1) ≤ compφ
a(a2)302

compbadb is a buggy boolean expression compiler that turns our less-than macro into a303

less-than-or-equal-to expression. While we do not have a less than operator in the Imp304

language, we have a less than macro defined as a1 ≤ a2 ∧¬(a1 ≤ a2 ∧a2 ≤ a1). For simplicity,305

we will use < in this paper. The resulting program compiler 8 is correct for programs that306

do not contain <, and we use it throughout this subsection. We give a short summary of the307

proof effort that it took to prove these case studies in Table 2.308

ITP 2024

https://uwplse.org/potpie/docs/Imp_LangTrick.ProofCompiler.ProofCompAuto.html
https://uwplse.org/potpie/docs/Imp_LangTrick.Tactics.SemanTactics.html
https://uwplse.org/potpie/docs/Imp_LangTrick.CodeCompiler.EnvToStackLTtoLEQ.html#compile_bexp


28:10 Correctly Compiling Proofs About Programs Without Proving Compilers Correct

Table 2 The lines of code, number of theorems, and the time it took for the Tree plugin to
generate and check our case studies in Section 4.1. “Core” refers to proving the source Hoare triple.
“Tree” refers to how much work it took to get to the point where one could call the Tree plugin
(which is different from calling the tree compiler, which is simply a one-liner), and “TreeC” the
additional effort needed to ensure correctness. “CC” gives how much more work it would take to be
able to use the CC workflow after ensuring tree compilation correctness.

Multiplication Exponentiation Series Square Root
Core Tree TreeC CC Core Tree TreeC CC Core Tree TreeC CC Core Tree TreeC CC

LOC 209 104 56 508 478 107 54 362 679 174 45 630 406 154 43 286
Theorems 3 1 2 28 9 1 2 26 14 1 2 48 6 1 2 29

Tree CG (s) 0.172 0.154 2.781 4.279
Tree Check (s) 0.131 0.098 0.534 1.946

4.1.1 Helper Functions309

We describe how we compile proofs about two helper functions: multiplication and exponen-310

tiation. For clarity, we omit environments in the lemmas we state here.311

Multiplication The first helper function is a multiplication function, which behaves as312

expected (code in green is actually wrapped Coq terms, whereas code in black is an expression313

in our language substituted into a Coq term as per the semantics of our logic in Figure 3):314

1 { ⊤ }
2 x := param 0; y := 0;
3 while (1 ≤ x) do
4 y := y + param 1;
5 x := x - 1;
6 { y = (param 0) · (param 1) }

The proof of this Imp Hoare triple is straightforward since the body of the function does315

not encounter the incorrect behavior of the compiler. By combining this triple with a316

termination proof, we are able to generate a helper lemma 9 that relates applications of the317

Imp multiplication function to Coq’s Nat.mul:318

Lemma mult_aexp_wrapper a1 a2 n1 n2: a1 ⇓ n1 → a2 ⇓ n2 → mult(a1, a2) ⇓ (n1 ∗ n2)%nat.

This lemma lets us reason more directly about nats. We use this lemma in the subsequent319

case studies, demonstrating how PotPie enables us to reuse the source Hoare proof of this320

triple to get the target-level version of this lemma almost for free—we still have to reprove321

termination at the target level, something we hope to address in future work.322

Exponentiation Exponentiation is similarly straightforward, except we use multiplication323

as defined above as a function in its body and thus must use the multiplication function324

wrapper to prove the loop invariant, and we obtain the following wrapper 10 :325

Lemma exp_aexp_wrapper : forall a1 a2 n1 n2, a1 ⇓ n1 → a2 ⇓ n2 → exp(a1, a2) ⇓ n2n1.

4.1.2 Geometric Series326

One example use case for partial correctness specifications is floating point estimation of327

mathematical functions, like sin(x) and ex, by way of computing infinite series with well-328

behaved error terms. Since floating point numbers are unable to represent all of the reals,329

we must approximate these functions within some error bound. As a simple version of this330

https://uwplse.org/potpie/docs/Imp_LangTrick.Examples.rsa_impLang.html#mult_aexp_wrapper
https://uwplse.org/potpie/docs/Imp_LangTrick.Examples.Exponentiation.html#exp_aexp_wrapper
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use case, we consider a program for calculating the geometric series
∑∞

i=1
1
xi within an error331

bound of ϵ = δn

δd
. We require x ≥ 2 so that the series converges, which simplifies some of our332

assertions for this example. While this is a toy example that would be easier to compute in333

its closed form—the series
∑∞

i=0 a · ri is known to converge to a
1−r for |r| < 1, it suffices as a334

simple example of using PotPie with an interesting partial specification. We cover a more335

realistic example in Section 4.1.3. The program we use to compute this series is as follows:336

1 { 2 ≤ x ∧ x = x ∧ δn ̸= 0 ∧ δd ̸= 0 ∧ 1 = 1; ∧x = x ∧ 2 = 2 }
2 x := x; // the series denominator
3 rn := 1; // the result numerator
4 rd := x; // the result denominator (for i = 1)
5 i := 2; // the next exponent
6 { rn · xi − rn · xi−1 = rd · xi−1 − rd ∧ x = x ∧ 2 ≤ x ∧ 2 ≤ i } // loop invariant
7 // the loop condition is equivalent to ϵ < 1

x−1 − rn
rd , and 1

x−1 =
∑∞

i=1
1
x

8 while (mult(rn , δd · (x − 1)) + mult(rd , δn · (x − 1)) < mult(rd , δd)) do
9 d := exp(x, i);

10 rn := frac_add_numerator (rn , rd , 1, d); // a/b + c/d = (ad + cb)/(
bd)

11 rd := frac_add_denominator (rd , d); // fraction addition denominator
12 i := i + 1;
13 { ¬ (mult(rn , δd · (x − 1)) + mult(rd , δn · (x − 1)) < mult(rd , δd))
14 ∧ (rn · xi − rn · xi−1 = rd · xi−1 − rd ∧ x = x ∧ 2 ≤ x ∧ 2 ≤ i) } // loop

postcondition
15 { δd · rd ≤ δn · (x − 1) · rd + δd · (x − 1) · rn } // program postcondition : 1

x−1 − rn
rd ≤ δn

δd

For brevity, we omit assertions outside of the pre/postcondition, loop invariant, and loop337

postcondition. We show wrapped Coq Props and arithmetic terms in green, i.e. δn · (x − 1).338

Terms in black are Imp expressions. Note that we encounter the bug in our program339

compiler, which miscompiles the < in the while loop conditional. However, we are still able to340

compile this program and its proof to Stack because (1) the pre/postconditions’ meaning is341

preserved by compilation, and (2) the implication database is still valid, i.e., every compiled342

Imp implication is still an implication in Stack.343

To see (1), we will need to look at the underlying representation of our assertions. As344

given in Figure 3, our precondition and postcondition actually have the following form:345

(fun x’ rn’ rd’ i’ => 2 ≤ x’ ∧ x’ = x ∧ δn ̸= 0 ∧ δd ̸= 0 ∧ rn’ = 1 ∧ rd’ = x ∧ i’ = 2) x 1 x 2346

(fun rn’ rd’ => δd · rd’ ≤ δn · (x − 1) · rd’ + δd · (x − 1) · rn’) rn rd347

Everything after the anonymous function is actually an expression in the Imp language.348

These are the only parts of the assertions that are compiled by the specification compiler.349

For instance, x is a constant arithmetic expression in Imp, which wraps Coq’s nat type. The350

arithmetic compiler, compa, from Figure 2 compiles these to nat constants in the Stack351

language. For the variables rn and rd, compφ,k
a (rn) = #φ(rn). After compiling, we get the352

postcondition δd · #5 ≤ δn · (x − 1) · #5 + δd · (x − 1) · #2, or symbolically: 1
x−1 − #2

#5 ≤ δn

δd
.353

For (2), we have to show that every implication in the Imp implication database is354

compiled to a valid implication in Stack. The implication most relevant to the successful355

compilation of the proof is the last one, which implies the program’s postcondition. Since356

the Imp loop condition < gets compiled to <= in Stack, our negated loop condition becomes357

¬ (mult(#2, δd · (x − 1)) + mult(#5, δn · (x − 1)) ≤ mult(#5, δd))358

This is equivalent to the below inequality (where ≡ denotes “is numerically equivalent to”),359

which still implies the compiled postcondition. This is easily proved with the Psatz.lia tactic.360

mult(#5, δd) < mult(#2, δd · (x − 1)) + mult(#5, δn · (x − 1)) ≡ 1
x−1 − #2

#5 < δn

δd
361

ITP 2024
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4.1.3 Square Root362

The second approximation program we consider interacts with the same miscompilation and363

still meaningfully preserves the source specification. Given numbers a, b, ϵn, ϵd, we consider a364

square root approximation program that calculates some x, y such that | x2

y2 − a
b | ≤ ϵn

ϵd
. We365

can project the postcondition entirely into Coq terms, multiplying through both sides by the366

denominator so we can express it in our language. After writing the program, we come up367

with the following loop condition, which represents ϵn

ϵd
<

∣∣∣ x2

y2 − a
b

∣∣∣ (· is syntactic sugar for368

mult, and < is actually the Imp less-than macro):369

loop_cond ≜ (y ·y ·b·ϵn < y ·y ·a·ϵd − x·x·a·ϵd) ∨ (y ·y ·b·ϵn < x·x·b·ϵd − y ·y ·a·ϵd)370

Our Imp square root program and specification is given by the following.371

1 {⊤}
2 x := a; y := mult (2, b);
3 inc_n := a; inc_d := mult (2, b);
4 while ( loop_cond ) do
5 inc_d := mult (2, inc_d);
6 if (mult(mult(y, y), mult(a, ϵd)) ≤ mult(mult(x, x), mult(b, ϵd)))
7 then x := frac_sub_numerator (x, y, inc_n , inc_d);
8 else x := frac_add_numerator (x, y, inc_n , inc_d);
9 y := frac_add_denominator (y, inc_d);

10 { ¬loop_condition ∧ ⊤ } =⇒
11 { ((x · x · b · ϵd) − (y · y · a · ϵd) ≤ y · y · b · ϵn) ∧ ((y · y · a · ϵd) − (x · x · b · ϵd) ≤ y · y · b · ϵn) }

Most of the rules of consequence are straightforward. The only nontrivial implication372

involved is the final rule of consequence for the postcondition. The loop’s postcondition is373

¬
(

ϵn

ϵd
<

∣∣∣ x2

y2 − a
b

∣∣∣) ≡
∣∣∣ x2

y2 − a
b

∣∣∣ ≤ ϵn

ϵd
, which directly gets us the program postcondition.374

During compilation, the loop condition is miscompiled: the program compiler changes <375

to ≤. This results in the following target loop condition, where again, mult is represented376

by ·. Note this is not green since it represents an expression in Stack, not a Coq one.377

stk_loop_cond ≜ #1 · #1 · b · ϵn ≤ #1 · #1 · a · ϵd − #4 · #4 · b · ϵd378

∨ #1 · #1 · b · ϵn ≤ #4 · #4 · b · ϵd − #1 · #1 · a · ϵd379

Compared to the target program and proof, the main difference is in the final application of380

the rule of consequence, where the incorrect behavior of the compiler appears and changes381

the semantics of the loop condition. The programs have meaningfully different semantics,382

and those meaningfully different semantics do manifest in the application of the while rule.383

1 {(⊤, ⊤)}
2 push; push; push; push;
3 #4 := a; #1 := mult (2, b);
4 #3 := a; #2 := mult (2, b);
5 {4, ⊤}
6 while ( stk_loop_cond ) do
7 #2 := mult (2, #2);
8 if (mult(mult (#1, #1) , mult(a, ϵd)) ≤ mult(mult (#4, #4) , mult(a, ϵd)

))
9 then #4 := frac_sub_numerator (#4, #1, #3, #2);

10 else #4 := frac_add_numerator (#4, #1, #3, #2);
11 #1 := frac_add_denominator (#1, #2)
12 {(4, ¬target_loop_condition )) /\ (4, ⊤)} =⇒
13 {4, (#4·#4·b· ϵd) − (#1·#1· a·ϵd) ≤ (#1·#1·b·ϵn) ∧ ((#1 · #1·a·ϵd) − (#4·#4·b·ϵd) ≤ #1·#1·b·ϵn)}

While the loop condition is indeed miscompiled, the postcondition uses Coq’s ≤, so384

the postcondition is not. Even though the unsound behavior of the compiler changes the385
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semantics of the loop invariant, it is not enough to break the implication between the386

loop condition and the Coq-wrapped loop condition. Further, because of the way that the387

postcondition projects into Coq, the final implication is almost completely provable via388

applications of helper lemmas from Section 4.1.1 and the tactics inversion and Psatz.lia.389

4.2 PotPie Three Ways390

PotPie makes it easy to swap out control-flow-preserving program compilers and still reuse391

the same infrastructure. We instantiate PotPie with three variants of a program compiler,392

and use these on three small programs: shift (left-shift) 14 , max 15 16 , and min 17 :393

1. An incomplete program compiler 18 that is missing entire cases of the source394

language grammar. Only shift can be compiled using the incomplete proof compiler.395

2. An incorrect program compiler 19 that contains a mistake and an unsafe optimization,396

in a similar vein to the previous examples. We can compile max using it, but not min.397

3. An unverified correct program compiler 20 that always preserves program and398

specification behavior. This can be used to proof compile all of the programs.399

These examples show we are able to instantiate the PotPie framework for several different400

compilers, and PotPie is compatible with correct compilers as well. We are able to invoke401

the CC and Tree compilers with all of these case studies as well.402

5 Implementation403

While much of our proof development for PotPie is implemented in Coq, the Tree plugin404

is implemented in OCaml (Section 5.1). We prove that PotPie is sound for both workflows405

(Section 5.2) and keep PotPie’s trusted computing base small (Section 5.3).406

5.1 The Tree Plugin407

The Tree plugin is implemented in OCaml, and consists of about 2.2k lines of code (LOC).408

Much of the code (∼1.1k LOC) is simply copied from the reusable plugin library coq-plugin-409

lib1 and updated to Coq 8.16.1. Additionally, such a plugin only has to be created once per410

target language-logic pair, and is completely independent from compilation. Indeed, the plugin411

can be called on any Stack Hoare tree—the tree need not be the result of compilation. While412

Table 1 indicates that the plugin automates a check for the commutativity equations from413

Section 3.2.1, this is because the properties checked by the plugin imply the commutativity414

equations for the included Tree proof compiler in our code 2 —it never actually checks the415

commutativity equations themselves. This makes Tree more flexible than the CC approach.416

The plugin is called on a Stack tree, function environment, implication database (with417

proof of its validity), and list of functions. Here we call it on our multiplication example:418

1 Certify (MultTargetTree.tree) (MultTargetTree.fenv) (ProdTargetTree.facts)
2 (MultValidFacts.valid_facts) (MultTargetTree.funcs) as mult.
3 Check mult.

mult contains the answer returned by the plugin. If the plugin is set to generate certificates419

and it is successful, mult has type stk_valid_tree. Otherwise, mult is a Coq bool.420

1 https://github.com/uwplse/coq-plugin-lib
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Table 3 The proof engineering effort that went into stating and formalizing PotPie, including
the infrastructure to support the code and spec languages, logics, the compilers, the case studies,
and automation. Here, “Thms” means the number of Theorems and Lemmas, while “Specs” means
the number of Definitions, Fixpoints, and Inductives. “WF” stands for well-formed, “Insts.” for
instantiations of CC compilers, “Cases” for our case studies, and “Auto” for automation. “Base
Props” refers to code related to the base assertions seen in Figure 3.

Imp Stack Base Compiler Insts. Cases Auto Misc TotalLang Logic WF Lang Logic WF Props Code Spec Tree CC
LOC 808 1948 3605 2593 1077 5635 941 1102 159 780 3045 2133 6971 2914 3225 36936
Thms 15 67 103 91 17 204 37 44 2 17 93 52 288 31 105 1166
Specs 43 32 51 29 51 63 31 25 14 13 40 100 238 50 107 887

The plugin recurses over the input tree and attempts to construct the certificate 21 .421

This may fail if the tree is malformed or there are mutually recursive functions. As we saw422

in Section 2.2, the Stack logic requires that all expressions preserve the stack, which is423

represented by the relation exp_stack_pure_rel 3 . However, due to the semantics of Stack424

functions, we need to know that all function calls preserve the stack, and showing that425

exp_stack_pure_rel is true in the presence of mutually recursive functions would lead to an426

infinite loop. If certificate generation fails, the plugin tries to provide a boolean answer as427

a fallback mechanism. It does this by checking each function for stack-preserving behavior428

modulo the behavior of other functions 23 , then checking the proof tree recursively 24 .429

As we saw in Table 2, the certificate generator and tree checking algorithms are fairly430

performant. This is due to several caching and reduction algorithm optimizations we made.431

Before applying optimizations, the series and square root examples took >10 minutes to432

generate certificates, and now take <5 seconds. The main bottleneck was Coq’s δ-reductions,433

which unfold constants. Our plugin provides an option to treat certain functions as “opaque”434

inside the plugin 27 , leaving their constants folded and speeding up normalization. This435

does not change the user’s Coq environment. The plugin also uses unification (for example,436

to match with constructors of option types 32 ) to avoid all but one call to normalization,437

which we found to significantly improve performance.438

5.2 Formal Proof439

Our Coq formalization includes two proofs of soundness, one for each of the workflows, as440

well as all of the case studies from Section 4. The CC soundness proof 1 takes the form441

of a correct-by-construction function that takes a source Hoare proof, the well-formedness442

conditions, and the implication translation, and produces a verified Hoare proof in the target,443

as described in Section 3.1. For Tree, we prove that if all of the obligations for CC are444

satisfied, then the compiled tree is valid 12 . As we mentioned in Section 3.1, we additionally445

show that when the OCaml plugin 5 generates a certificate that typechecks, the certificate446

can be used to obtain an hl_stk proof.447

We loosely based our code on Xavier Leroy’s course on mechanized semantics [30]. The448

LOC numbers for our proof development in Table 3 are large when compared to the size of449

Leroy’s course materials, but there are several key differences. First, our languages include450

functions, making our semantics more difficult to reason about than the course’s semantics.451

The trade-off is that functions give us the opportunity to reason about the composition of452

programs and their proofs (Section 4.1). Second, our target language is far less well-behaved453

than either of the languages in the course. Third, PotPie supports two different workflows,454

two separate proof compilers that work to get guarantees even for incorrect compilation.455

https://github.com/uwplse/potpie/tree/v0.4/plugin/src/checker.ml#L81
https://uwplse.org/potpie/docs/Imp_LangTrick.Stack.StackPurestBase.html#bexp_stack_pure_rel
https://uwplse.org/potpie/docs/Imp_LangTrick.Stack.FuncsFrame.html#funcs_frame
https://github.com/uwplse/potpie/tree/v0.4/plugin/src/boolChecker.ml#L
https://github.com/uwplse/potpie/tree/v0.4/plugin/theories/Demo.v#L49
https://github.com/uwplse/potpie/tree/v0.4/plugin/src/CoqCoreInductives.ml#L54
https://uwplse.org/potpie/docs/Imp_LangTrick.ProofCompiler.ProofCompCodeCompAgnosticMod.html#CompilerAgnosticProofCompilerType.proof_compiler
https://uwplse.org/potpie/docs/Imp_LangTrick.ProofCompiler.TreeProofCompiler.html#TreeProofCompilerSound.tree_compiler_sound
https://github.com/uwplse/potpie/tree/v0.4/plugin/src/
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5.3 Trusted Computing Base (TCB)456

PotPie’s two workflows for proof compilation have different TCBs and provide different levels457

of guarantees. The CC proof compiler’s TCB consisting of the Coq kernel, the mechanized458

semantics, the definition of the Hoare triple, and two localized Uniqueness of Identity Proofs459

(UIP) axioms for reasoning about the equalities between dependent types. UIP, which is460

consistent with Coq, states that any two equality proofs are equal for all types—we instead461

assume that equality proofs are equal to each other for two particular types, AbsEnvs 25462

(the implementation of SM from Section 2.2) and function environments 26 . This does not463

imply universal UIP but is similarly convenient for proof engineering. Whenever all of its464

proof obligations can be satisfied, the correct-by-construction proof compiler is guaranteed to465

produce a correct proof. However, the resulting proof object may not be independent from466

the source semantics, due to various opaque proof terms that cannot be further reduced.467

The Tree plugin can either generate a certificate or run a check on a proof tree, returning468

its validity as a boolean. The certificate generator has a strictly smaller TCB than CC since469

it does not assume any form of UIP. The certificate generator works by generating a term470

of type stk_valid_tree 22 . Since this term must still be type-checked in Coq for it to be471

considered valid, this does not add to the TCB. The Tree boolean proof tree checker has its472

own “kernel,” also implemented in OCaml, for checking proof trees, which adds to its TCB.473

While it does not imply formal correctness, it can boost confidence in compiled proofs.474

6 Related Work and Discussion475

Early work on compiling proofs positioned itself as an extension of proof-carrying code [35].476

A 2005 paper [4] stated a theorem relating source and target program logics. Early work [33]477

transformed Hoare-style proofs about Java-like programs to proofs about bytecode imple-478

mented in XML. Later work [37] implemented proof-transforming compilation, trans-479

forming proof objects from Eiffel to bytecode, and formalizing the specification compiler in480

Isabelle/HOL, with a hand-written proof of correctness of the proof compiler. Subsequent481

work [16] showed how to embed the compiled bytecode proofs into Isabelle/HOL. Our work482

is the first we know of to formally verify the correctness of the proof compiler, and to use it483

to support specification-preserving compilation in the face of incorrect program compilation.484

Existing work on certificate translation [3, 26], which is similar but focuses on compiler485

optimizations, may help us relax control-flow restrictions.486

There is a lens through which our work is related to type-preserving compilation:487

compiling programs in a way that preserves their types. There is work on this defined on a488

subset of Coq for CPS [7] and ANF [21] translations. As the source and target languages489

both have dependent types, this can likewise be used to compile proofs while preserving490

specifications. A similar line of work can be found for compilations of proof languages in491

Metamath Zero [9]. Our work focuses on compiling program logic proofs instead.492

Our work implements a certified proof transformation in Coq for an embedded program493

logic. Proof transformations were introduced in 1987 to bridge automation and usability [39],494

and have since been used for proof generalization [15, 20, 17], reuse [31], and repair [41].495

The golden standard for correct compilation is certified compilation: formally proving496

compilers correct. The CompCert verified C compiler [29, 28] lacks bugs present in other497

compilers [46]. The CakeML [25] verified implementation of ML includes a verified compiler.498

Oeuf [32] and CertiCoq [2] are certified compilers for Coq’s term language Gallina. Certified499

compilation is desirable when possible, but real compilers may be unverified, incomplete, or500

incorrect. Our work complements certified compilation by exploring an underexplored part of501

ITP 2024

https://uwplse.org/potpie/docs/Imp_LangTrick.Imp.Imp_LangLogPropDec.html#UIP_AbsEnv
https://uwplse.org/potpie/docs/Imp_LangTrick.ProofCompiler.ProofCompilerHelpers.html#UIP_fun_env_refl
https://uwplse.org/potpie/docs/Imp_LangTrick.Stack.StkHoareTree.html#stk_valid_tree


28:16 Correctly Compiling Proofs About Programs Without Proving Compilers Correct

the design space of compiler correctness: compilation that is specification-preserving for a502

given source program and (possibly partial) specification, even when the compilation may not503

be fully meaning-preserving for that program. The original CompCert paper [28] brought504

up the possibility of specification-preserving compilation as part of a design space that is505

complementary to, not in competition with, certified compilation. We agree; it expands506

the space of guarantees one can get for compiled programs—even when those programs are507

incorrectly compiled. It also expands the means by which one may get said guarantees.508

Our work implements a kind of certifying compilation: producing compiled code and509

a proof that its compilation is correct. For example, COGENT’s certifying compiler proves510

that, for a given program compiled from COGENT to C, target code correctly implements a511

high-level semantics embedded in Isabelle/HOL [1, 42]. Certifying compilation shares the512

benefit that the compiler may be incorrect or incomplete, yet still produce proofs about the513

compiled program. Most prior work on certifying compilation that we are aware of targets514

general properties (like type safety) rather than program-specific ones. One exception is515

Rupicola [40], a framework for correct but incomplete compilation from Gallina to low-level516

code using proof search, which focuses on preservation of program-specific specifications517

proven at the source level like we do. But it does not appear to address the case when the518

program itself is incorrectly compiled, nor the case where there already exists an unverified519

complete program compiler. Our work adds to the space of certifying compilation by520

preserving program-specific partial specifications proven at the source level even when the521

program itself is compiled incorrectly, with the added benefit of compositionality.522

One immensely practical method for showing that programs compiled with unverified523

compilers preserve behavior is translation validation. In translation validation, the524

compiler produces a proof of the correctness of a particular program’s compilation, which525

then needs to be checked [36]. Our work is in a similar spirit, but distinguishes itself in that526

our method does not rely on functional equivalence for the particular compiled program.527

Our method makes it possible to show that a compiler preserves a partial specification when528

the program is miscompiled in ways that are not relevant to the specification.529

Section 4.1.1 shows in a limited context our method’s potential for compositionality.530

Similar motivation is behind (much more mature) work in compositional certified compila-531

tion [45, 14, 19]. DimSum [43] defines an elegant and powerful language-and-logic-agnostic532

framework for language interoperability, though to get guarantees, it leans heavily on data533

refinement arguments that show a simulation property stronger than what our framework534

requires. We hope that in the future, we will make our compositional workflow more sys-535

tematic and fill the gap of compositional multi-language reasoning in a relaxed correctness536

setting—by linking compiled proofs directly in a common target logic. Similar motivations537

are behind linking types [38], which are extensions to type systems for reasoning about538

correct linking in a multilanguage setting. We expect tradeoffs similar to those between our539

work and type-preserving compilation to arise in this setting.540

Frameworks based on embedded program logics (e.g., Iris [18, 24], VST-Floyd [8],541

Bedrock [12, 13], YNot [34], CHL [11], Sepref [27], and CFML [10]) help proof engineers542

write proofs in a proof assistant about code with features that the proof assistant lacks. C543

programs verified in the VST program logic are, by composition with CompCert, guaranteed544

to preserve their specifications even after compilation to assembly code [5]. Our work aims to545

create an alternative toolchain for preserving guarantees across compilation that allows the546

program compiler to be unverified or even incorrect, even for the program being compiled.547

Relative to practical frameworks like Iris and VST, the program logics we use for this are548

much less mature. We hope to extend our work to more practical logics and lower-level549
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target languages in the future, so that users of toolchains like VST can get guarantees about550

compiled programs even in the face of incorrect compilation.551

7 Conclusion552

We showed how compiling proofs across program logics can empower proof engineers to553

reason directly about source programs yet still obtain proofs about compiled programs—even554

when they are incorrectly compiled. Our implementation PotPie and its two workflows, CC555

and Tree, are formally verified in Coq, providing guarantees that compiled proofs not only556

prove their respective specifications, but also are correctly related to the source proofs. Our557

hope is to provide an alternative to relying on verified program compilers without sacrificing558

important correctness guarantees of program specifications.559

Future Work In this work, we have not tackled the problem of control flow optimizations.560

We believe the challenges of bridging abstraction levels and verifying control flow-modifying561

optimizations are mostly orthogonal, and that the latter is out of our scope. In future work,562

we would like to investigate ways our work could be composed with control flow optimizations.563

For example, we may be able to leverage Kleene algebras with tests (KAT) [22] to reason564

about control flow optimizations. An optimization pass could extract a proof subtree and565

return the optimized subprogram, while preserving semantic equality via KAT. This approach566

may even be able to leverage a Hoare triple’s preconditions to apply optimizations that567

would be otherwise unsound [23]. For an example of KATs applied to existing compiler568

optimizations, see existing work [22]. Beyond relaxing control flow restrictions, other next569

steps include supporting more source languages and logics, supporting additional linking of570

target-level proofs, implementing optimizing compilers, and bringing the benefits of proof571

compilation to more practical frameworks.572

We also have not addressed the issue of scalability. As we outlined in Section 1, that was573

not in the scope of this paper. We do however have some ideas for expanding scalability. There574

are two main issues of scale: (1) applying the methodology here to more complex programming575

languages and program logics, and (2) how easily proof compilers can be implemented and576

used. For more complex languages and logics, we are currently implementing a language577

with pointers and an accompanying separation logic, as well as a stack language with stack578

pointer expressions. This will give us a better idea of the effort involved to scale to more579

languages. As for implementing and using proof compilers, we found that the Tree version580

of the proof compiler was very easy to write, and the plugin consists of only 1.1k new LOC581

as we saw in Section 5.1. We believe that significant parts of that code could have been582

automatically generated as well, which would further decrease the time needed to create such583

a proof compiler. We are excited to explore these directions, as well as others, in the future.584
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