
Adapting Proof Automation to Adapt Proofs

Talia Ringer
University of Washington, USA

Nathaniel Yazdani
University of Washington, USA

John Leo
Halfaya Research, USA

Dan Grossman
University of Washington, USA

Abstract

We extend proof automation in an interactive theorem prover
to analyze changes in specifications and proofs. Our approach
leverages the history of changes to specifications and proofs
to search for a patch that can be applied to other specifica-
tions and proofs that need to change in analogous ways.
We identify and implement five core components that

are key to searching for a patch. We build a patch finding
procedure from these components, which we configure for
various classes of changes. We implement this procedure in
a Coq plugin as a proof-of-concept and use it on real Coq
code to change specifications, port definitions of a type, and
update the Coq standard library. We show how our findings
help drive a future that moves the burden of dealing with the
brittleness of small changes in an interactive theorem prover
away from the programmer and into automated tooling.

CCS Concepts • Software and its engineering → Soft-

ware verification; Software evolution; Programming by
example;

Keywords proof automation, proof repair, proof evolution

ACM Reference Format:

Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. 2018.
Adapting Proof Automation to Adapt Proofs. In Proceedings of 7th
ACM SIGPLAN International Conference on Certified Programs and
Proofs (CPP’18). ACM, New York, NY, USA, 15 pages. https://doi.
org/10.1145/3167094

1 Introduction

Proof automation makes verification more accessible to pro-
grammers, but it is often intractable without programmer
guidance. In interactive theorem proving (ITP), the program-
mer guides the proof search process. The guidance reduces

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP’18, January 8–9, 2018, Los Angeles, CA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5586-5/18/01. . . $15.00
https://doi.org/10.1145/3167094

the search space to make proof automation more tractable.
This in turns helps the programmer, who does not have to
manually verify the entire system.
Despite automation, programming in these proof assis-

tants is brittle: Even a minor change to a definition or the-
orem can break many dependent proofs. This is a major
source of development inefficiency in proof assistants based
on dependent type theory [13, 29, 64].

Traditional proof automation does not consider howproofs,
definitions, and theorems change over time. Instead, it is
driven by the state of the current proof, sometimes with sup-
plementary information from other proofs, definitions, and
theorems (as in hint databases [3] and rippling [20]). This
puts the burden of dealing with brittleness on the program-
mer.
We present a new approach to proof automation that ac-

counts for breaking changes. In our approach, the program-
mer guides proof search by providing an example of how to
adapt proofs to changes in definitions or theorems. A tool
then generalizes the example adaptation into a reusable patch
that the programmer can use to fix other broken proofs.
In doing so, we chart a path for a future that moves the

burden of brittleness away from the programmer and into
proof automation. Programmers typically address brittle-
ness through design principles that make proofs resilient
to change [13, 29, 64], or through program-specific proof
automation [24]. These techniques, while useful, have limita-
tions: Planning a verification effort around future change is
challenging, and program-specific automation requires spe-
cialized knowledge. The programmer’s ability to anticipate
likely changes determines the robustness of both techniques
in the face of change. Even then, many breaking changes
are outside of the programmer’s control. Updating proof as-
sistant versions, for example, can break proofs regardless of
planning or automation [55].
We identify a set of core components that are critical

to searching an example for patches in Coq. We use the
components to build a procedure for finding patches in a Coq
plugin as a proof-of-concept. Case studies on real projects
like CompCert [43] and the Coq standard library suggest that
patches are useful for realistic scenarios, and that it is simple
to compose the components to handle different classes of
changes. We test the boundaries of the components on a
suite of tests and show how our findings can help build the
future we envision.

https://doi.org/10.1145/3167094
https://doi.org/10.1145/3167094
https://doi.org/10.1145/3167094

CPP’18, January 8–9, 2018, Los Angeles, CA, USA Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman

Definition IZR (z:Z) : R :=
match z with
| Z0 => 0
| Zpos n => INR (Pos.to_nat n)
| Zneg n => - INR (Pos.to_nat n)
end.

Definition IZR (z:Z) : R :=
match z with
| Z0 => 0
| Zpos n => IPR n
| Zneg n => - IPR n
end.

Figure 1. Old (left) and new (right) definitions of IZR in Coq. The old definition applies injection from naturals to reals and
conversion of positives to naturals; the new definition applies injection from positives to reals.

In summary, we contribute the following:

1. We identify a set of core components that are key to
searching for patches.

2. We demonstrate that these core components are useful
on real changes in Coq code.

3. We explore how to drive a future that moves the bur-
den of change in ITP away from the programmer and
into automated tooling.

2 Automation, Reimagined

Traditional proof automation considers only the current state
of theorems, proofs, and definitions. This is a missed op-
portunity: Verification projects are rarely static. Like other
software, these projects evolve over time.

Currently, the burden of change largely falls on program-
mers. This does not have to be true. Proof automation can
view theorems, proofs, and definitions as fluid entities: When
a proof or specification changes, a tool can search the differ-
ence between the old and new versions for a reusable patch
that can fix broken proofs.

Status Quo Experienced Coq programmers use design
principles and custom tactics to make proofs resilient to
change. These techniques are useful for large proof develop-
ments, but they place the burden of change on the program-
mer. This can be problematic when change occurs outside of
the programmer’s control.

Consider a commit from the upcoming Coq 8.7 release [49].
This commit redefined injection from integers to reals (Fig-
ure 1). This change broke 18 proofs in the standard library.
The Coq developer who committed the change fixed the

broken proofs, then made an additional 12 commits to ad-
dress the change in coq-contribs, a regression suite of projects
that the Coq developers maintain as versions change. Many
of these changes were simple. For example, the developer
wrote a lemma that describes the change:

Lemma INR_IPR : ∀ p, INR (Pos.to_nat p) = IPR p.

The developer then used this lemma to fix broken proofs
within the standard library. For example, one proof broke on
this line:

rewrite Pos2Nat.inj_sub by trivial.X

It succeeded with the lemma:
rewrite <- 3!INR_IPR, Pos2Nat.inj_sub by trivial.✓

These changes are outside-facing: Coq users have to make
similar changes to their own proofs when they update to Coq
8.7. The Coq developer can update some tactics to account
for this, but it is impossible to account for every tactic that
users could use. Furthermore, while the developer responsi-
ble for the changes knows about the lemma that describes
the change, the Coq user does not. The Coq user must de-
termine how the definition has changed and how to address
the change, perhaps by reading documentation or by talking
to the developers.

OurVision When a user updates Coq, a tool can determine
that the definition has changed, then analyze changes in the
standard library and in coq-contribs that resulted from the
change in definition (in this case, rewriting by the lemma).
It can extract a reusable patch from those changes, which it
can automatically apply within broken user proofs. The user
never has to consider how the definition has changed.

3 Generating Reusable Patches

We identify five components that are key to finding reusable
patches. We implement these components in a prototype
Coq plugin, which we call Pumpkin Patch (Proof Updater
Mechanically Passing Knowledge Into New Proofs, Assisting
The Coq Hacker), or Pumpkin.1

We focus the Pumpkin prototype on the proof assistant
Coq [2]. In Coq, each theorem is a type, and a proof of that
theorem is a term that inhabits that type. Rather than write
proof terms directly, users write proof scripts in a high-level
tactic language; Coq then uses these scripts to guide search
for a proof term.
The Pumpkin repository contains a detailed user guide.

To use Pumpkin, the programmer modifies a single proof
script to provide an example of how to adapt a proof to a
change. Pumpkin generalizes the example adaptation into
a reusable patch: a function that can be used to fix other
broken proofs, which Pumpkin defines as a Coq term. We
focus on the problem of finding these patches; we discuss
how to extend Pumpkin to automatically apply patches it
finds in Section 7.
We motivate the core components (Section 3.1) and de-

scribe how they compose to find patches (Section 3.2). We
find patches for real code in Section 4, and we describe our
implementation in Section 5.

1http://github.com/uwplse/PUMPKIN-PATCH/tree/cpp18

http://github.com/uwplse/PUMPKIN-PATCH/tree/cpp18

Adapting Proof Automation to Adapt Proofs CPP’18, January 8–9, 2018, Los Angeles, CA, USA

1 Theorem old: ∀ (n m p : nat), n <= m -> m <= p ->
2 n <= p + 1. (* P p *)
3 Proof.
4 intros. induction H0.
5 - auto with arith.
6 - constructor. auto.
7 Qed.
8
9 fun (n m p : nat) (H : n <= m) (H0 : m <= p) =>
10 le_ind
11 m (* m *)
12 (fun p0 => n <= p0 + 1) (* P *)
13 (le_plus_trans n m 1 H) (* : P m *)
14 (fun (m0 : nat) (_ : m <= m0) (IHle : n <= m0 + 1) =>
15 le_S n (m0 + 1) IHle)
16 p (* p *)
17 H0

1 Theorem new: ∀ (n m p : nat), n <= m -> m <= p ->
2 n <= p. (* P' p *)
3 Proof.
4 intros. induction H0.
5 - auto with arith.
6 - constructor. auto.
7 Qed.
8
9 fun (n m p : nat) (H : n <= m) (H0 : m <= p) =>
10 le_ind
11 m (* m *)
12 (fun p0 => n <= p0) (* P' *)
13 H (* : P' m *)
14 (fun (m0 : nat) (_ : m <= m0) (IHle : n <= m0) =>
15 le_S n m0 IHle)
16 p (* p *)
17 H0

Figure 2. Two proofs with different conclusions (top) and the corresponding proof terms (bottom) with relevant type
information. We highlight the change in theorem conclusion and the difference in terms that corresponds to a patch.

3.1 Motivating the Core

We identify and isolate five core components critical to find-
ing reusable patches:

1. Semantic differencing between terms
2. Patch specialization to arguments
3. Patch abstraction of arguments or functions
4. Patch inversion to reverse a patch
5. Lemma factoring to break a term into parts

The semantic differencing component finds the differ-
ence between two terms, which produces a candidate for
a reusable patch. The other components modify the candi-
date to try to produce a patch. To motivate this workflow,
consider using Pumpkin to search the proofs in Figure 2 for
a patch between conclusions. We invoke the plugin using
old and new as the example change:

Patch Proof old new as patch.

Pumpkin first determines the type that a patch from new

to old should have. To determine this, it semantically diffs
the types and finds this goal type (line 2):
∀ n m p, n <= m -> m <= p -> n <= p -> n <= p + 1

It then breaks each inductive proof into cases and deter-
mines an intermediate goal type for the candidate. In the
base case, for example, it diffs the types and determines that
a candidate between the base cases of new and old should
have this type (lines 11 and 12):

(fun p0 => n <= p0) m -> (fun p0 => n <= p0 + 1) m

It then diffs the terms (line 13) for such a candidate:
fun n m p H0 H1 =>
(fun (H : n <= m) => le_plus_trans n m 1 H)

: ∀ n m p, n <= m -> m <= p -> n <= m -> n <= m + 1

This candidate is close, but it is not yet a patch. This candi-
date maps base case to base case (it is applied to m); the patch
should map conclusion to conclusion (it should be applied
to p). Pumpkin abstracts this candidate by m (line 11), which
lifts it out of the base case:

fun n0 n m p H0 H1 =>
(fun (H : n <= n0) => le_plus_trans n n0 1 H)

: ∀ n0 n m p, n <= m -> m <= p -> n <= n0 -> n <= n0 + 1

Pumpkin then specializes this candidate to p (line 16), the
argument to the conclusion of le_ind. This produces a patch:

patch n m p H0 H1 :=
(fun (H : n <= p) => le_plus_trans n p 1 H)

: ∀ n m p, n <= m -> m <= p -> n <= p -> n <= p + 1

The user can then use patch to fix other broken proofs.
For example, given a proof that applies old, the user can use
patch to prove the same conclusion by applying new:

apply old.✓
apply patch. apply new.✓

This simple example uses only three components. The
other components help turn candidates into patches in simi-
lar ways. We discuss all five components in more detail in
the rest of this section.

Semantic Differencing The tool should be able to identify
the semantic difference between terms. The semantic differ-
ence is the difference between two terms that corresponds
to the difference between their types. Consider the base case
terms in Figure 2 (line 13):

le_plus_trans n m 1 H : n <= m + 1
H : n <= m

The semantic differencing component first identifies the
difference in their types, or the goal type:

n <= m -> n <= m + 1

It then finds a difference in terms that has that type:
fun (H : n <= m) => le_plus_trans n m 1 H

This is the candidate for a reusable patch that the other
components modify to find a patch.
Differencing operates over terms and types. Differenc-

ing tactics is insufficient, since tactics and hints may mask
patches (line 5).2 Furthermore, differencing is aware of the
2Since this is a simple example, replaying an existing tactic happens to
work. There are additional examples in the repository (Cex.v).

CPP’18, January 8–9, 2018, Los Angeles, CA, USA Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman

semantics of terms and types. Simply exploring the syntac-
tic difference makes it hard to identify which changes are
meaningful. For example, in the inductive case (line 14), the
inductive hypothesis changes:

... (IHle : n <= m0 + 1) ...

... (IHle : n <= m0) ...

However, the type of IHle changes for any two inductive
proofs over le with different conclusions. A syntactic differ-
encing component may identify this change as a candidate.
Our semantic differencing component knows that it can ig-
nore this change.

Patch Specialization The tool should be able to specialize
a patch candidate to specific arguments as determined by the
differences in terms. To find a patch for Figure 2, for example,
Pumpkinmust specialize the patch candidate to p to produce
the final patch.

Patch Abstraction A tool should be able to abstract patch
candidates of this form by the common argument:

candidate : P' t -> P t
candidate_abs : ∀ t0, P' t0 -> P t0

and it should be able to abstract patch candidates of this form
by the common function:

candidate : P t' -> P t
candidate_abs : ∀ P0, P0 t' -> P0 t

This is necessary because the tool may find candidates in
an applied form. For example, when searching for a patch
between the proofs in Figure 2, Pumpkin finds a candidate
in the difference of base cases. To produce a patch, Pumpkin
must abstract the candidate by the argument m. Abstracting
candidates is not always possible; abstraction will necessarily
be a collection of heuristics.

Patch Inversion The tool should be able to invert a patch
candidate. This is necessary to search for isomorphisms. It
is also necessary to search for implications between propo-
sitionally equal types, since candidates may appear in the
wrong direction. For example, consider two list lemmas (we
write length as len):

old : ∀ l' l, len (l' ++ l) = len l' + len l
new : ∀ l' l, len (l' ++ l) = len l' + len (rev l)

If Pumpkin searches the difference in proofs of these lem-
mas for a patch from the conclusion of new to the conclusion
of old, it may find a candidate backwards:

candidate l' l (H : old l' l) :=
eq_ind_r ... (rev_length l)

: ∀ l' l, old l' l -> new l' l

The component can invert this to get the patch:
patch l' l (H : new l' l) :=
eq_ind_r ... (eq_sym (rev_length l))

: ∀ l' l, new l' l -> old l' l

We can then use this patch to port proofs. For example,
if we add this patch to a hint database [3], we can port this
proof:

Theorem app_rev_len : ∀ l l',
len (rev (l' ++ l)) = len (rev l) + len (rev l').

Proof.
intros. rewrite rev_app_distr. apply old.✓

to this proof:
intros. rewrite rev_app_distr. apply new.✓

Rewrites like candidate are invertible: We can invert any
rewrite in one direction by rewriting in the opposite direc-
tion. In contrast, it is not possible to invert the patch Pumpkin
found for Figure 2. Inversion will necessarily sometimes fail,
since not all terms are invertible.

Lemma Factoring The tool should be able to factor a term
into a sequence of lemmas. This can help break other prob-
lems, like abstraction, into smaller subproblems. It is also
necessary to invert certain terms. Consider inverting an ar-
bitrary sequence of two rewrites:

t := eq_ind_r G ... (eq_ind_r F ...)

We can view t as a term that composes two functions:
g := eq_ind_r G ...
f := eq_ind_r F ...
t := g ◦ f

The inverse of t is the following:
t−1 := f−1 ◦ g−1

To invert t, Pumpkin identifies the factors [f; g], inverts
each factor to [f

−1
; g

−1
], then folds and applies the inverse

factors in the opposite direction.

3.2 Composing Components

The components come together to form a proof patch finding
procedure:

Pseudocode: find_patch(term, term’, direction)

1: diff types of term and term’ for goals
2: diff term and term’ for candidates
3: if there are candidates then
4: factor, abstract, specialize, and/or invert candidates
5: if there are patches then return patches
6: if direction is forwards then
7: find_patch(term’, term, backwards) for candidates
8: factor and invert candidates
9: if there are patches then return patches
10: return failure

Pumpkin infers a configuration from the example change.
This configuration customizes the highlighted lines for an
entire class of changes: It determines what to diff on lines 1
and 2, and how to use the components on line 4.
For example, to find a patch for Figure 2, Pumpkin used

the configuration for changes in conclusions of two proofs
that induct over the same hypothesis. Given two such proofs:
∀ x, H x -> P x
∀ x, H x -> P’ x

Pumpkin searches for a patch with this type:
∀ x, H x -> P’ x -> P x

Adapting Proof Automation to Adapt Proofs CPP’18, January 8–9, 2018, Los Angeles, CA, USA

Record int : Type :=
mkint { intval: Z; intrange: 0 <= intval < modulus }.

Record int : Type :=
mkint { intval: Z; intrange: -1 < intval < modulus }.

Figure 3. Old (left) and new (right) definitions of int in CompCert.

using this configuration:

1: diff conclusion types for goals
2: diff conclusion terms for candidates
3: if there are candidates then
4: abstract and then specialize candidates

Section 4 describes real-world examples that demonstrate
more configurations.

4 Case Studies: Changes in the Wild

We used the Pumpkin prototype to emulate three motivating
scenarios from real-world code:

1. Updating definitions within a project
(CompCert, Section 4.1)

2. Porting definitions between libraries
(Software Foundations, Section 4.2)

3. Updating proof assistant versions

(Coq Standard Library, Section 4.3)

The code we chose for these scenarios demonstrated dif-
ferent classes of changes. For each case, we describe how
Pumpkin configures the procedure to use the core compo-
nents for that class of changes. Our experiences with these
scenarios suggest that patches are useful and that the com-
ponents are effective and flexible.

Identifying Changes We identified Git commits from pop-
ular Coq projects that demonstrated each scenario. These
commits updated proofs in response to breaking changes.
We emulated each scenario as follows:

1. Replay an example proof update for Pumpkin
2. Search the example for a patch using Pumpkin
3. Apply the patch to fix a different broken proof

Our goal was to simulate incremental use of a patch find-
ing tool, at the level of a small change or a commit that
follows best practices. We favored commits with changes
that we could isolate. When isolating examples for Pump-
kin, we replayed changes from the bottom up, as if we were
making the changes ourselves. This means that we did not
always make the same change as the user. For example, the
real change from Section 4.1 updated multiple definitions;
we updated only one.

Pumpkin is a proof-of-concept and does not yet handle
some kinds of proofs. In each scenario, we made minor mod-
ifications to proofs so that we could use Pumpkin (for exam-
ple, using induction instead of destruction). Pumpkin does
not yet handle structural changes like adding constructors or
parameters, so we focused on changes that preserve shape,

like modifying constructors. We discuss supporting these fea-
tures and whether they may necessitate other components
in Section 7.

4.1 Updating Definitions

Coq programmers sometimes make changes to definitions
that break proofs within the same project. To emulate this use
case, we identified a CompCert commit [44] with a breaking
change to int (Figure 3). We used Pumpkin to find a patch
that corresponds to the change in int. The patch Pumpkin
found fixed broken inductive proofs.

Replay We used the proof of unsigned_range as the example
for Pumpkin. The proof failed with the new int:

Theorem unsigned_range:
∀ (i : int), 0 <= unsigned i < modulus.

Proof.
intros i. induction i using int_ind; auto.X

We replayed the change to unsigned_range:
intros i. induction i using int_ind. simpl. omega.✓

Search We used Pumpkin to search the example for a patch
that corresponds to the change in int. It found a patch with
this type:
∀ z : Z, -1 < z < modulus -> 0 <= z < modulus

Apply After changing the definition of int, the proof of the
theorem repr_unsigned failed on the last tactic:

Theorem repr_unsigned:
∀ (i : int), repr (unsigned i) = i.

Proof.
... apply Zmod_small; auto.X

Manually trying omega—the tactic which helped us in the
proof of unsigned_range—did not succeed. We added the patch
that Pumpkin found to a hint database. The proof of the
theorem repr_unsigned then went through:

... apply Zmod_small; auto.✓

4.1.1 Core Components

This scenario used the configuration for changes in construc-
tors of an inductive type. Given such a change:

Inductive T := ... | C : ... -> H -> T
Inductive T’ := ... | C : ... -> H’ -> T'

Pumpkin searches two inductive proofs of theorems:
∀ (t : T), P t
∀ (t : T’), P t

for an isomorphism3 between the constructors:
... -> H -> H’
... -> H’ -> H

3If Pumpkin finds just one implication, it returns that.

CPP’18, January 8–9, 2018, Los Angeles, CA, USA Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman

Fixpoint bin_to_nat (b : bin) : nat :=
match b with
| B0 => O
| B2 b' => 2 * (bin_to_nat b')
| B21 b' => 1 + 2 * (bin_to_nat b')
end.

Fixpoint bin_to_nat (b : bin) : nat :=
match b with
| B0 => O
| B2 b' => (bin_to_nat b') + (bin_to_nat b')
| B21 b' => S ((bin_to_nat b') + (bin_to_nat b'))
end.

Figure 4. Definitions of bin_to_nat for Users A (left) and B (right).

The user can apply these patches within the inductive
case that corresponds to the constructor C to fix other broken
proofs that induct over the changed type. Pumpkin uses this
configuration for changes in constructors:

1: diff inductive constructors for goals
2: use all components to recursively search for changes in conclusions of

the corresponding case of the proof
3: if there are candidates then
4: try to invert the patch to find an isomorphism

4.2 Porting Definitions

Coq programmers sometimes port theorems and proofs to
use definitions from different libraries. To simulate this, we
used Pumpkin to port two solutions [10, 14] to an exercise
in Software Foundations to each use the other solution’s def-
inition of the fixpoint bin_to_nat (Figure 4). We demonstrate
one direction; the opposite was similar.

Replay Weused the proof of bin_to_nat_pres_incr fromUser
A as the example for Pumpkin. User A cut an inline lemma
in an inductive case and proved it using a rewrite:

assert (∀ a, S (a + S (a + 0)) = S (S (a + (a + 0)))).
- ... rewrite <- plus_n_O. rewrite -> plus_comm.

When we ported User A’s solution to use User B’s defini-
tion of bin_to_nat, the application of this inline lemma failed.
We changed the conclusion of the inline lemma and removed
the corresponding rewrite:

assert (∀ a, S (a + S a) = S (S (a + a))).
- ... rewrite -> plus_comm.

Search We used Pumpkin to search the example for a patch
that corresponds to the change in bin_to_nat. It found an
isomorphism:
∀ P b, P (bin_to_nat b) -> P (bin_to_nat b + 0)
∀ P b, P (bin_to_nat b + 0) -> P (bin_to_nat b)

Apply After porting to User B’s definition, a rewrite in the
proof of the theorem normalize_correctness failed:

Theorem normalize_correctness:

∀ b, nat_to_bin (bin_to_nat b) = normalize b.

Proof.

... rewrite -> plus_0_r.X

Attempting the obvious patch from the difference in tactics—
rewriting by plus_n_O—failed. Applying the patch that Pump-
kin found fixed the broken proof:

... apply patch_inv. rewrite -> plus_0_r.✓

In this case, sincewe ported User A’s definition to a simpler
definition,4 Pumpkin found a patch that was not the most
natural patch. The natural patch would be to remove the
rewrite, just as we removed a different rewrite from the
example proof. This did not occur when we ported User
B’s definition, which suggests that in the future, a patch
finding tool may help inform novice users which definition
is simpler: It can factor the proof, then inform the user if
two factors are inverses. Tactic-level changes do not provide
enough information to determine this; the tool must have a
semantic understanding of the terms.

4.2.1 Core Components

This scenario used the configuration for changes in cases of
a fixpoint. Given such a change:

Fixpoint f ... := ... | g x
Fixpoint f’ ... := ... | g x’

Pumpkin searches two proofs of theorems:
∀ ..., P (f ...)
∀ ..., P (f’ ...)

for an isomorphism that corresponds to the change:
∀ P, P x -> P x’
∀ P, P x’ -> P x

The user can apply these patches to fix other broken proofs
about the fixpoint.

The key feature that differentiates these from the patches
we have encountered so far is that these patches hold for
all P; for changes in fixpoint cases, the procedure abstracts
candidates by P, not by its arguments. Pumpkin uses this
configuration for changes in fixpoint cases:

1: diff fixpoint cases for goals
2: use all components to recursively search an intermediate lemma for a

change in conclusions
3: if there are candidates then
4: specialize and factor the candidate

abstract the factors by functions
try to invert the patch to find an isomorphism

For the prototype, we require the user to cut the interme-
diate lemma explicitly and to pass its type and arguments.
In the future, an improved semantic differencing component
can infer both the intermediate lemma and the arguments:
It can search within the proof for some proof of a function
that is applied to the fixpoint.

4User A uses *; User B uses +. For arbitrary n, the term 2 * n reduces to
n + (n + 0), which does not reduce any further.

Adapting Proof Automation to Adapt Proofs CPP’18, January 8–9, 2018, Los Angeles, CA, USA

Definition divide p q := ∃ r, p * r = q. Definition divide p q := ∃ r, q = r * p.

Figure 5. Old (left) and new (right) definitions of divide in Coq.

4.3 Updating Proof Assistant Versions

Coq sometimes makes changes to its standard library that
break backwards-compatibility. To test the plausibility of
using a patch finding tool for proof assistant version up-
dates, we identified a breaking change in the Coq standard
library [45]. The commit changed the definition of divide

prior to the Coq 8.4 release (Figure 5). The change broke 46
proofs in the standard library. We used Pumpkin to find an
isomorphism that corresponds to the change in divide. The
isomorphism Pumpkin found fixed broken proofs.

Replay We used the proof of mod_divide as the example for
Pumpkin. The proof broke with the new divide:

Theorem mod_divide:
∀ a b, b~=0 -> (a mod b == 0 <-> (divide b a)).

Proof.
... rewrite (div_mod a b Hb) at 2.X

We replayed changes to mod_divide:
... rewrite mul_comm. symmetry.
rewrite (div_mod a b Hb) at 2.✓

Search We used Pumpkin to search the example for a patch
that corresponds to the change in divide. It found an isomor-
phism:
∀ r p q, p * r = q -> q = r * p
∀ r p q, q = r * p -> p * r = q

Apply The proof of the theorem Zmod_divides broke after
rewriting by the changed theorem mod_divide:

Theorem Zmod_divides:
∀ a b, b<>0 -> (a mod b = 0 <-> ∃ c, a = b * c).

Proof.
... split; intros (c,Hc); exists c; auto.X

Adding the patches Pumpkin found to a hint database
made the proof go through:

... split; intros (c,Hc); exists c; auto.✓

4.3.1 Core Components

This scenario used the configuration for changes in depen-
dent arguments to constructors. Pumpkin searches two proofs
that apply the same constructor to different dependent argu-
ments:

... (C (P x)) ...

... (C (P’ x)) ...

for an isomorphism between the arguments:
∀ x, P x -> P’ x
∀ x, P’ x -> P x

The user can apply these patches to patch proofs that
apply the constructor (in this case study, to fix broken proofs
that instantiate divide with some specific r).

So far, we have encountered changes of this form as argu-
ments to an induction principle; in this case, the change is an
argument to a constructor. A patch between arguments to
an induction principle maps directly between conclusions of
the new and old theoremwithout induction; a patch between
constructors does not. For example, for divide, we can find a
patch with this form:
∀ x, P x -> P’ x

However, without using the induction principle for exists,
we can’t use that patch to prove this:

(∃ x, P x) -> (∃ x, P’ x)

This changes the goal type that semantic differencing
determines. Pumpkin uses this configuration for changes in
constructor arguments:

1: diff constructor arguments for goals
2: use all components to recursively search those arguments for changes

in conclusions
3: if there are candidates then
4: abstract the candidate

factor and try to invert the patch to find an isomorphism

For the prototype, the model of constructors for the se-
mantic differencing component is limited, so we ask the user
to provide the type of the change in argument (to guide
line 2). We can extend semantic differencing to remove this
restriction.

5 Inside the Core

We have shown that the core components are useful for
finding proof patches. This section describes our implemen-
tation of the components (Section 5.1) and the procedure
(Section 5.2) so that it is possible to implement them in other
systems. While our system is a very early prototype under
active development, we have made the source code avail-
able on Github.5 Our prototype has no impact on the trusted
computing base (Section 5.3).

5.1 Inside the Components

The interested reader can follow along in the repository.

5.1.1 Semantic Differencing

We implement semantic differencing over trees: Pumpkin
compiles each proof term into a tree (evaluation.ml). In these
trees, every node is a type context, and every edge is an exten-
sion to that type context with a new term.6 Correspondingly,
type differencing (to identify goal types) compares nodes,
and term differencing (to find candidates) compares edges.
5http://github.com/uwplse/PUMPKIN-PATCH/tree/cpp18
6These trees are inspired by categorical models of dependent type the-
ory [36].

http://github.com/uwplse/PUMPKIN-PATCH/tree/cpp18

CPP’18, January 8–9, 2018, Los Angeles, CA, USA Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman

The component (differencing.ml) uses these nodes and
edges to prioritize semantically relevant differences. At the
lowest level, it calls a primitive differencing function which
checks if it can substitute one term within another term to
find a function between their types.
The key benefit to this model is that it gives us a natural

way to express inductive proofs, so that differencing can
efficiently identify good candidates. Consider, for example,
searching for a patch between conclusions of two inductive
proofs of theorems about the natural numbers:

nat_ind P ... (fun (IH : P n) => ...) : ∀ n, P n
nat_ind P’ ... (fun (IH : P’ n) => ...) : ∀ n, P’ n

In each case, the component diffs the terms in the dotted
edges of the tree for nat_ind (Figure 6) to try to find a term
that maps between conclusions of that case:

P' 0 -> P 0 (* base case candidate *)
P' (S n) -> P (S n) (* inductive case candidate *)

The component also knows that the change in the type of
IH is inconsequential (it occurs for any change in conclusion).
Furthermore, it knows that IH cannot show up as a hypothesis
in the patch, so it attempts to remove any occurrences of IH
in any candidate.

When the component finds a candidate, it knows P' and P

as well as the arguments 0 or (S n). This makes it simple to
query abstraction for the final patch:
∀ n, P' n -> P n

The differencing component is lazy: It only compiles terms
into trees one step at a time. It then expands each tree as
needed to find candidates (expansion.ml). For example, con-
sider searching two functions for a patch between conclu-
sions:

fun (t : T) => b
fun (t' : T) => b'

Differencing introduces a single term of type T to a com-
mon environment, then expands and recursively diffs the
bodies b and b' in that environment.
The tool always maintains pointers to easily switch be-

tween the tree and AST representations of the terms. This
representation enables extensibility; we discuss a broad range
of extensions in Sections 6.2 and 7.

5.1.2 Patch Specialization

Specialization (specialize.ml) takes a patch candidate and
some arguments, all of which are Coq terms. It applies the
candidate to the arguments, then it βι-reduces [25] the result
using Coq’s Reduction.nf_betaiota function. It is the job of
the patch finding procedure to provide both the candidate
and the arguments.

5.1.3 Patch Abstraction

Abstraction (abstraction.ml) takes a patch candidate, the goal
type, and the function arguments or function to abstract. It
first generalizes the candidate, wrapping it inside of a lambda

Γ

Γ, _ : P 0 Γ, n : nat

Γ, n : nat, IH : P n

Γ, n : nat, IH : P n, _ : P (S n)

n

IH
∀ P,
 P 0 ->
 (∀ n, P n -> P (S n)) ->
 ∀ n, P n

Figure 6. The type of (left) and tree for (right) the induction
principle nat_ind. The solid edges represent hypotheses, and
the dotted edges represent the proof obligations for each
case in an inductive proof.

from the type of the term to abstract. Then, it substitutes
terms inside the body with the abstract term. It continues
to do this until there is nothing left to abstract, then filters
results by the goal type. Consider, for example, abstracting
this candidate by m:

fun (H : n <= m) => le_plus_trans n m 1 H
: n <= m -> n <= m + 1

The generalization step wraps this in a lambda from some
nat, the type of m:

fun (n0 : nat) =>
(fun (H : n <= m) => le_plus_trans n m 1 H)

: ∀ n0, n <= m -> n <= m + 1

The substitution step replaces m with n0:
fun (n0 : nat) =>
(fun (H : n <= n0) => le_plus_trans n n0 1 H)

: ∀ n0, n <= n0 -> n <= n0 + 1

Abstraction uses a list of abstraction strategies to determine
what subterms to substitute. In this case, the simplest strategy
works: The tool replaces all terms that are convertible to the
concrete argument m with the abstract argument n0, which
produces a single candidate. Type-checking this candidate
confirms that it is a patch.

In some cases, the simplest strategy is not sufficient, even
when it is possible to abstract the term. It may be possible to
produce a patch only by abstracting some of the subterms
convertible to the argument or function (we show an ex-
ample of this in Section 6.2), or the term may not contain
any subterms convertible to the argument or function at
all. We implement several strategies to account for this. The
combinations strategy, for example, tries all combinations
of substituting only some of the convertible subterms with
the abstract argument. The pattern-based strategy substi-
tutes subterms that match a certain pattern with a term that
corresponds to that pattern.

It is the job of the patch finding procedure to provide the
candidate and the terms to abstract. In addition, each con-
figuration includes a list of strategies. The configuration for
changes in conclusions, for example, starts with the simplest
strategy, and moves on to more complex strategies only if

Adapting Proof Automation to Adapt Proofs CPP’18, January 8–9, 2018, Los Angeles, CA, USA

that strategy fails. This design makes abstraction simple to
extend with new strategies and simple to call with different
strategies for different classes of changes; we identify new
strategies in Section 6.2.

5.1.4 Patch Inversion

Patch inversion (inverting.ml) exploits symmetry to try to
reverse the conclusions of a candidate patch. It first factors
the candidate using the factoring component, then calls the
primitive inversion function on each factor, then finally folds
the resulting list in reverse. The primitive inversion function
exploits symmetry. For example, equality is symmetric, so the
component can invert any application of eq_ind or eq_ind_r

(any rewrite). Indeed, eq_ind and eq_ind_r are inverses, and
are related by symmetry:

eq_ind_r A x P (H : P x) y (H0 : y = x) :=
eq_ind x (fun y0 : A => P y0) H y (eq_sym H0)

If inversion does not recognize that the type is symmetric,
it swaps subterms and type-checks the result to see if it is an
inverse. In the future, it may be possible to use this swapping
functionality in a reflexive application of the induction prin-
ciple to infer symmetry properties like eq_sym for other types.
The component can then use these properties to generate
reverse induction principles like eq_ind_r. We further detail
inversion in Section 6.2.

5.1.5 Lemma Factoring

The lemma factoring component (factoring.ml) searcheswithin
a term for its factors. For example, if the term composes two
functions, it returns both factors:

t : X -> Z (* term *)
[f : X -> Y; g : Y -> Z] (* factors *)

In this case, the component takes the composite term and
X as arguments. It first searches as deep as possible for a
term of type X -> Y for some Y. If it finds such a term, then it
recursively searches for a term with type Y -> Z. It maintains
all possible paths of factors along the way, and it discards
any paths that cannot reach Z.

The current implementation can handle paths with more
than two factors, but it fails when Y depends on X. Other
components may benefit from dependent factoring; we leave
this to future work.

5.2 Inside the Procedure

The implementation (patcher.ml4) of the procedure from Sec-
tion 3.2 starts with a preprocessing step which compiles the
proof terms to trees (like the tree in Figure 6). It then searches
for candidates one step at a time, expanding the trees when
necessary.

The Pumpkin prototype exposes the patch finding proce-
dure to users through the Coq command Patch Proof. Pump-
kin automatically infers which configuration to use for the
procedure from the example change. For example, to find

a patch for the case study in Section 4.1, we used this com-
mand:
Patch Proof Old.unsigned_range unsigned_range as patch.

Pumpkin analyzed both versions of unsigned_range and de-
termined that a constructor of the int type changed (Figure 3),
so it initialized the configuration for changes in constructors.
Internally, Pumpkin represents configurations as sets of

options, which it passes to the procedure. The procedure
uses these options to determine how to compose compo-
nents (for example, whether to abstract candidates) and how
to customize components (for example, whether semantic
differencing should look for an intermediate lemma). To im-
plement new configurations for different classes of changes,
we simply tweak the options.

5.3 Trusted Computing Base

A common concern for Coq plugins is an increase in the
trusted computing base. The Coq developers provide a safe
plugin API in Coq 8.7 to address this [30]. Our prototype
takes this into consideration: While Pumpkin does not yet
support Coq 8.7, it only calls the internal Coq functions that
the developers plan to expose in the safe API [40]. Further-
more, Coq type-checks terms that plugins produce. Since
Pumpkin does not modify the type checker, it cannot produce
an ill-typed term.

6 Testing Boundaries

In the case studies in Section 4, we showed how the core
components are useful for real scenarios. In this section, we
explore the boundary between what the Pumpkin prototype
can and cannot handle. It is precisely this boundary that
informs us how to improve the implementations of the core
components.

To evaluate this boundary, we tested the core components
of Pumpkin on a suite of 50 pairs of proofs (Section 6.1). We
designed 11 of these pairs to succeed, then modified their
proofs to produce the remaining 39 pairs that try to stress
the core functionality of the tool. We learned the following
from the pairs that tested Pumpkin’s limitations:

1. The failed pairs drive improvements.

Pumpkin failed on 17 of 50 pairs. These pairs tell us
how to improve the core. (Section 6.2)

2. The pairs unearth abstraction strategies.

Pumpkin produced an exponential number of candi-
dates in 5 of 50 pairs. New abstraction strategies can
dramatically reduce the number of candidates. (Sec-
tion 6.2)

3. Pumpkin was fast, and it can be faster.

The slowest successful patch took 48ms. The slowest
failure took 7ms. Simple changes can make Pumpkin
more efficient. (Section 6.3)

CPP’18, January 8–9, 2018, Los Angeles, CA, USA Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman

fun n m p (H : n <= m) (H0 : m <= p) =>
le_S n p (* ... proof of stronger lemma *)

: ∀ n m p, n <= m -> m <= p -> n <= S p

fun n m p (H : n <= m) (H0 : m <= p) =>
le_plus_trans n p 1 (* ... proof of stronger lemma *)

: ∀ n m p, n <= m -> m <= p -> n <= p + 1

Figure 7. Two proof terms old (left) and new (right) that contain the same proof of a stronger lemma.

6.1 Patch Generation Suite

Wewrote a suite7 of 50 pairs of proofs. We wrote these proofs
ourselves since searching for proof patches is a new domain,
so there was no existing benchmark suite to work with. We
used the following methodology:

1. Choose theorems old and new

2. Write similar inductive proofs of old and new

3. Modify the proof of old to produce more pairs
4. Search for patches from new to old

5. If possible, search for patches from old to new

In total, we chose 11 pairs of theorems old and new, and we
wrote 50 pairs of proofs of those theorems.

For example, one pair of theorems old and new was a sim-
plification of the auxiliary lemmas that we encountered in
the case study in Section 4.2. For the first proof of old, we
added a rewrite, like in the case study:

rewrite <- plus_n_O. rewrite -> plus_comm.

For the second proof of old, we commuted the rewrites:
rewrite -> plus_comm. rewrite <- plus_n_O.

We then searched for patches in both directions, since the
conclusions of old and new were propositionally equal.

Our goal was to determine what changes to proofs stress
the components and how to use that information to drive
improvements. We focused on differences in conclusions,
the most supported configuration. Since Pumpkin operates
over terms, we removed redundant proof terms, even if they
were produced by different tactics. We controlled the first
pair of proofs of each pair of theorems for features we had
not yet implemented, like nested induction, changes in hy-
potheses, and abstracting omega terms. These features some-
times showed up in later proofs (for example, after moving
a rewrite); we kept these proofs in the suite, since isolated
changes to supported proofs that introduce unsupported
features can inform future improvements.

6.2 Three Challenges

Pumpkin found patches for 33 of the 50 pairs. 28 of the 33
successes did not stress Pumpkin at all: Pumpkin found the
correct candidate immediately and was able to abstract it
in one try. The pairs that Pumpkin failed to patch and the
successful pairs that stressed abstraction reveal key informa-
tion about how to improve the core components. We walk
through three examples. Future tools can use these as chal-
lenge problems to improve upon Pumpkin.

7http://github.com/uwplse/PUMPKIN-PATCH/blob/cpp18/plugin/coq/
Variants.v

A Challenge for Differencing For one pair of proofs of
theorems with propositionally equal conclusions (Figure 7),
the differencing component failed to find candidates in either
direction. These proofs both contain the same proof of a
stronger lemma; Pumpkin found patches from this lemma to
both old and new, but it was unable to find a patch between old

and new. A patch may show up deep in the difference between
le_plus_trans and le_S, but even if we δ -reduce (unfold the
definition of [25]) le_plus_trans, this is not obvious:

le_plus_trans n m p (H : n <= m) :=
(fun lemma : m <= m + p =>
trans_contra_inv_impl_morphism
PreOrder_Transitive
(m + p)
m
lemma)

(le_add_r m p)
H

This points to two difficulties in finding patches: Knowing
when to δ -reduce terms is difficult; exploring the appropriate
time for reduction may produce patches for pairs that Pump-
kin currently cannot patch. Furthermore, finding patches is
more challenging when neither theorem has a conclusion
that is as strong as possible.

A Challenge for Inversion For one pair of proofs with
propositionally equal conclusions, Pumpkin found a patch
in one direction, but failed to invert it:

fun n m p (_ : n <= m) (_ : m <= p) (H1 : n <= p) =>
gt_le_S n (S p) (le_lt_n_Sm n p H1)

: ∀ n m p, n <= m -> m <= p -> n <= p -> S n <= S p

The inversion component was unable to invert this term,
even though an inverse does exist. To invert this, the com-
ponent needs to know to δ -reduce gt_le_S:
gt_le_S n m :=
(fun (H : ∀ n0 m0, n0 < m0 -> S n0 <= m0) => H n m)
...

: ∀ n m, n < m -> S n <= m

It then needs to swap the hypothesis with the conclusion
in H to produce the inverse:
gt_le_S−1 n m :=
(fun (H : ∀ n0 m0, S n0 <= m0 -> n0 < m0) => H n m)
...
: ∀ n m, S n <= m -> n < m

Inversion currently swaps subterms when it is not aware
of any symmetry properties about the inductive type. How-
ever, it does not know when to δ -reduce function definitions.
Furthermore, there are many possible subterms to swap; for
inversion to know to only swap the subterms of H, it must
have a better understanding of the structure of the term.
Both of these are ways to improve inversion.

http://github.com/uwplse/PUMPKIN-PATCH/blob/cpp18/plugin/coq/Variants.v
http://github.com/uwplse/PUMPKIN-PATCH/blob/cpp18/plugin/coq/Variants.v

Adapting Proof Automation to Adapt Proofs CPP’18, January 8–9, 2018, Los Angeles, CA, USA

A Challenge for Abstraction Abstraction produced an
exponential number of candidates when abstracting a patch
candidate with this type:
∀ n n0,
(fun m => n <= max m n0) n ->
(fun m => n <= max n0 m) n

The goal was to abstract by n and produce a patch with
this type:
∀ m0 n n0,
n <= max m0 n0 ->
n <= max n0 m0

The difficulty was in determining which occurrences of
n to abstract. The component needed to abstract only the
highlighted occurrences:

fun n n0 (H0 : n <= max n0 n) =>
@eq_ind_r
nat
(max n0 n)
(fun n1 => n <= n1)
H0
(max n n0)
(max_comm n n0)

The simplest abstraction strategy failed, and a more com-
plex strategy succeeded only after producing exponentially
many candidates. While this did not have a significant im-
pact on time, this case gives rise to a new class of abstrac-
tion strategies: semantics-aware abstraction. In this case, we
know from the type of the candidate and the type of eq_ind_r
that these two hypothesis types are equivalent (similarly for
the conclusion types):

(fun m => n <= max m n0) n
(fun n1 => n <= n1) (max n0 n)

The tool can search recursively for patches to find two
patches that bridge the two equivalent types:

p1 := fun n => max n0 n
p2 := fun n => max n n0

Then the candidate type is exactly this:
∀ n n0,
(fun n1 => n <= n1) (p2 n) ->
(fun n1 => n <= n1) (p1 n)

Abstraction should thus abstract the highlighted subterms
and the terms that have types constrained by those subterms.
This produces a patch in one candidate:

fun m0 n n0 (H0 : n <= max n0 m0) =>
@eq_ind_r
nat
(max n0 m0) (* p1 m0 *)
(fun n1 => n <= n1) (* P *)
H0 (* : P (p1 m0) *)
(max m0 n0) (* p2 m0 *)
(max_comm m0 n0) (* : p1 m0 = p2 m0 *)

This same strategy would find a patch for one of the pairs
that Pumpkin failed to abstract. This is a natural future di-
rection for abstraction.

6.3 Performance

Pumpkin performed well for all pairs. The slowest success
took 48ms.8 When Pumpkin failed, it failed fast. The slowest
failure took 7ms. While we find this promising, proof terms
were small (≤ 67 LOC); we leave evaluating performance on
larger terms to future work.

Pumpkin was slowest when the patch showed up inverted
in the difference of proofs, since Pumpkin had to search twice,
once in each direction. A future procedure may determine
which direction to search first ahead of time; proof term size
may be a simple heuristic for this.

7 Conclusions & Future Work

Our vision is a future of proof automation in ITP that adapts
proofs to breaking changes. This will unify the spirit of
ITP—collaboration between the programmer and the tool—
with the realities of modern proof engineering: Verification
projects are large, specifications evolve over time, and de-
pendencies change and break backward-compatibility. Too
much of the burden of change rests on the programmer; not
enough rests on the tool.

We conclude with a discussion of improvements that can
help bring this vision to life. These improvements are driven
by our experiences using the Pumpkin prototype and by
conversations within the ITP community.

Supporting structural changes. Coq programmers often
make structural changes. It is common, for example, to add
new hypotheses, constructors, or parameters to a type. The
ideal tool should find patches for these changes. Existing
work in proof reuse [17, 54] and type-directed diffing [52]
may help guide these improvements.

Exploringnew components. The core components of Pump-
kin are critical to searching for patches in Coq, but they
may not be sufficient for the ideal tool. While we find the
flexibility of these components promising thus far, in imple-
menting new features, we may discover new components.
For example, patches for certain structural changes may be
program transformations as opposed to terms; supporting
these patches may reveal new components.

Modeling diverse proof styles. Coq programmers use di-
verse proof styles; the ideal tool should support many dif-
ferent styles. Proofs about decidable domains that apply the
term dec_not_not pose difficulties for abstraction and inver-
sion; the ideal tool should support these. Pumpkin has limited
support for changes in hypotheses, fixpoints, constructors,
pattern matching, and nested induction; the ideal tool should
implement these features.

Improving user experience. The ideal proof patching tool
should be natural for programmers to use. A future patching
tool can produce tactics from the patches it finds, that way
8i7-4790K, at 4.00 GHz, 32 GB RAM

CPP’18, January 8–9, 2018, Los Angeles, CA, USA Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman

programmers can remove references to old specifications.
A future patching tool can integrate with an IDE (such as
Proof General [8]) or continuous integration (CI) system
(such as Travis [9]) to suggest patches at natural steps in the
development process.

Handling version updates. Updating Coq versions is an
ideal use case for finding proof patches: When the client
updates Coq, a tool can automatically search commits to the
standard library or to coq-contribs for patches. In this case,
the example comes from the Coq developers, not from the
library client—the client never has to look at the changes that
the Coq developers make. The ideal tool should fully support
updates in Coq versions. Pumpkin can patch certain changes
in the standard library, but it does not yet search for those
changes automatically and determine which configuration to
use depending on what has changed. Furthermore, as proof
assistant versions change, so may the AST and the plugin
interface. To fully support version updates, the tool should
support different language versions.

Isolating changes. Programmers sometimes make multiple
changes to a verification project in the same commit; the ideal
tool should break down large changes into small, isolated
changes to find patches. This will help in finding benchmarks,
supporting library and version updates, and integrating with
CI systems.Wemay draw onwork in change and dependency
management [11, 22, 38] to identify changes, then use the
factoring component to break these changes into smaller
parts.

Supporting other proof assistants. Coq is just one ofmany
proof assistants; ideal tools should support different proof
assistants. While Pumpkin focuses on Coq, the underlying
concepts extend to other proof assistants with constructive
logics (for example, Lean [6] and Agda [1]). Proof assistants
with non-constructive logics (for example, Isabelle/HOL [5])
may benefit from a different approach; this is similar to the
problem of finding patches for proofs of decidable domains
in Coq, since classical properties provably hold for decidable
propositions [7].

Applying patches. The ideal tool should not only find patches,
but also apply the patches it finds automatically to fix bro-
ken proofs. In some cases, this may be as simple as adding
the patches as hints to a hint database, so that proofs go
through with no changes. However, hint databases in Coq
cannot support certain terms [3], and adding too many hints
may impede performance. More generally, we can integrate
Pumpkin with a transfer tactic [37, 65], which is a perfect
fit: Transfer tactics automatically adapt proofs between iso-
morphic types and implications, but they do not find these
functions; Pumpkin finds these functions, but it does not
apply them.

8 Related Work

Our work builds upon prior research in proof reuse, proof
automation, proof engineering, refactoring, differencing &
incremental computation, programming by example, and
program repair.

ProofReuse Our approach reimagines the problem of proof
reuse in the context of proof automation. While we focus on
changes that occur over time, traditional proof reuse tech-
niques can help improve our approach. Existing work in
proof reuse focuses on transferring proofs between isomor-
phisms, either through extending the type system [15] or
through an automatic method [47]. This is later generalized
and implemented in Isabelle [37] and Coq [61, 65]; later meth-
ods can also handle implications. Integrating a transfer tactic
with a proof patch finding tool will create an end-to-end tool
that can both find patches and apply them automatically.

Proof reuse for extended inductive types [17] adapts proof
obligations to structural changes in inductive types. Later
work [54] proposes a method to generate proofs for new
constructors. These approaches may be useful when ex-
tending the differencing component to handle structural
changes. Existing work in theorem reuse and proof general-
ization [31, 39, 58] abstracts existing proofs for reusability,
and may be useful for improving the abstraction component.
Our work focuses on the components critical to searching
for patches; these complementary approaches can drive im-
provements to the components.

Proof Automation We address a missed opportunity in
proof automation for ITP: searching for patches that can fix
broken proofs. This is complementary to existing automation
techniques. Nonetheless, there is a wealth of work in proof
automation that makes proofs more resilient to change. Pow-
erful tactics like crush [24] can make proofs more resilient
to changes. Hammers like Isabelle’s sledgehammer [56] can
make proofs agnostic to some low-level changes. Recent
work [26] paves the way for a hammer in Coq. Even the
most powerful tactics cannot address all changes; our hope
is to open more possibilities for automation.

Powerful project-specific tactics [23, 24] can help prevent
low-level maintenance tasks. Writing these tactics requires
good engineering [33] and domain-specific knowledge, and
these tactics still sometimes break in the face of change.
A future patching tool may be able to repair tactics; the
debugging process for adapting a tactic is not too dissimilar
to providing an example to a tool.
Rippling [20] is a technique for automating inductive

proofs that uses restricted rewrite rules to guide the inductive
hypothesis toward the conclusion; this may guide improve-
ments to the differencing, abstraction, and specialization
components. The abstraction and factoring components ad-
dress specific classes of unification problems; recent devel-
opments to higher-order unification [51] may help improve

Adapting Proof Automation to Adapt Proofs CPP’18, January 8–9, 2018, Los Angeles, CA, USA

these components. Lean [60] introduces the first congruence
closure algorithm for dependent type theory that relies only
on the Uniqueness of Identity Proofs (UIP) axiom. While
UIP is not fundamental to Coq, it is frequently assumed as
an axiom; when it is, it may be tractable to use a similar
algorithm to improve the tool.
GALILEO [19] repairs faulty physics theories in the con-

text of a classical higher-order logic (HOL); there is prelim-
inary work extending this style of repair to mathematical
proofs. Knowledge-sharing methods [32] can adapt some
proofs across different representations of HOL. These com-
plementary approaches may guide extensions to support
decidable domains and classical logics.

Proof Engineering Existing proof engineering work ad-
dresses brittleness by planning for changes [64] and design-
ing theorems and proofs that make maintenance less of an
issue. Design principles for specific domains (such as formal
metatheory [13, 28, 29]) can make verification more tractable.
CertiKOS [34] introduces the idea of a deep specification to
ease verification of large systems. Ornaments [27, 63] sepa-
rate the computational and logical components of a datatype,
and may make proofs more resilient to datatype changes.
These design principles and frameworks are complementary
to our approach. Even when programmers use informed de-
sign principles, changes outside of the programmer’s control
can break proofs; our approach addresses these changes.

There is a small body of work on change and dependency
management for verification, both to evaluate impact of po-
tential changes and maximize reuse [11, 38] and to optimize
build performance [22]. These approaches may help isolate
changes, which is necessary to identify future benchmarks,
integrate with CI systems, and fully support version updates.

Refactoring Our approach is close in spirit to refactor-
ing [50]. The Haskell refactoring tool HaRe [4] automatically
lifts definitions, and may be useful for improving abstraction.
There is a growing body of work on refactoring in the con-
text of ITP [18, 62]. The IDE CoqPIE [59] and the verification
platformWhy3 [16] can both adapt Coq proofs to simple syn-
tactic changes. It may be possible to use our lemma factoring
component to improve proof refactoring tools. Proof refac-
toring tools are semantics-preserving; unlike these tools, our
approach handles semantic changes.

Differencing& Incremental Computation Existingwork
in differencing and incremental computation may help im-
prove our semantic differencing component. Type-directed
diffing [52] finds differences in algebraic data types. Semantics-
based change impact analysis [12] models semantic differ-
ences between documents. Differential assertion checking [41]
analyzes different versions of a program for relative correct-
nesswith respect to a specification. Incremental λ-calculus [21]
introduces a general model for program changes. All of these
may be useful for improving semantic differencing.

Programming by Example Our approach generalizes an
example that the programmer provides. This is similar to pro-
gramming by example, a subfield of program synthesis [35].
This field addresses different challenges in different logics,
but may drive solutions to similar problems in a dependently
typed language.

Program Repair Adapting proofs to changes is essentially
program repair for dependently typed languages. Program
repair tools for languages with non-dependent type sys-
tems [42, 46, 48, 53, 57] may have applications in the context
of a dependently typed language. Similarly, our work may
have applications within program repair in these languages:
Future applications of our approach may repurpose it to
repair programs for functional languages.

Acknowledgments

We thank Valentin Robert and Zach Tatlock for valuable
conversations about proof patching. We thank Leonardo
de Moura and the UW PLSE lab for helpful suggestions.
We thank the students and lecturers from the first Deep-
Spec Summer School for motivating future work. We thank
Dan Licata for pointers in understanding the mathematical
properties of inductive types. This material is based upon
work supported by the National Science Foundation Grad-
uate Research Fellowship under Grant No. DGE-1256082.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

References

[1] 2017. Agda. (2017). http://wiki.portal.chalmers.se/agda/pmwiki.php
[2] 2017. Coq. (2017). http://coq.inria.fr/
[3] 2017. Coq Reference Manual, Section 8.9: Controlling Automation.

(2017). http://coq.inria.fr/refman/tactics.html
[4] 2017. HaRe: The Haskell Refactoring Tool. (2017). http://github.com/

RefactoringTools/HaRe
[5] 2017. Isabelle/HOL: A Proof Assistant for Higher-Order Logic. (2017).

http://isabelle.in.tum.de/doc/tutorial.pdf
[6] 2017. Lean Theorem Prover. (2017). http://github.com/leanprover/lean
[7] 2017. Library Coq.Logic.Decidable. (2017). http://coq.inria.fr/library/

Coq.Logic.Decidable.html
[8] 2017. Proof General. (2017). http://proofgeneral.github.io/
[9] 2017. Travis CI. (2017). http://travis-ci.org/
[10] User A. 2017. Software Foundations Solution. (2017). http://github.

com/blindFS/Software-Foundations-Solutions
[11] Serge Autexier, Dieter Hutter, and Till Mossakowski. 2010. Verifica-

tion, Induction Termination Analysis. Springer-Verlag, Berlin, Heidel-
berg, Chapter Change Management for Heterogeneous Development
Graphs, 54–80. http://dl.acm.org/citation.cfm?id=1986659.1986663

[12] Serge Autexier and Normen Müller. 2010. Semantics-based Change
Impact Analysis for Heterogeneous Collections of Documents. In Pro-
ceedings of the 10th ACM Symposium on Document Engineering (DocEng
’10). ACM, New York, NY, USA, 97–106. DOI:http://dx.doi.org/10.1145/
1860559.1860580

[13] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pol-
lack, and Stephanie Weirich. 2008. Engineering Formal Metatheory.

http://wiki.portal.chalmers.se/agda/pmwiki.php
http://coq.inria.fr/
http://coq.inria.fr/refman/tactics.html
http://github.com/RefactoringTools/HaRe
http://github.com/RefactoringTools/HaRe
http://isabelle.in.tum.de/doc/tutorial.pdf
http://github.com/leanprover/lean
http://coq.inria.fr/library/Coq.Logic.Decidable.html
http://coq.inria.fr/library/Coq.Logic.Decidable.html
http://proofgeneral.github.io/
http://travis-ci.org/
http://github.com/blindFS/Software-Foundations-Solutions
http://github.com/blindFS/Software-Foundations-Solutions
http://dl.acm.org/citation.cfm?id=1986659.1986663
http://dx.doi.org/10.1145/1860559.1860580
http://dx.doi.org/10.1145/1860559.1860580

CPP’18, January 8–9, 2018, Los Angeles, CA, USA Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman

In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’08). ACM, New York,
NY, USA, 3–15. DOI:http://dx.doi.org/10.1145/1328438.1328443

[14] User B. 2017. Software Foundations Solution. (2017). http://github.
com/marshall-lee/software_foundations

[15] Gilles Barthe and Olivier Pons. 2001. Type Isomorphisms and Proof
Reuse in Dependent Type Theory. In Proceedings of the 4th Interna-
tional Conference on Foundations of Software Science and Computa-
tion Structures (FoSSaCS ’01). Springer-Verlag, London, UK, UK, 57–71.
http://dl.acm.org/citation.cfm?id=646793.704711

[16] François Bobot, Jean-Christophe Filliâtre, Claude Marché, Guillaume
Melquiond, and Andrei Paskevich. 2013. Preserving User Proofs Across
Specification Changes. In FifthWorking Conference on Verified Software:
Theories, Tools and Experiments, Ernie Cohen and Andrey Rybalchenko
(Eds.), Vol. 8164. Springer, Atherton, United States, 191–201. https:
//hal.inria.fr/hal-00875395

[17] Olivier Boite. 2004. Proof Reuse with Extended Inductive Types. In
Theorem Proving in Higher Order Logics: 17th International Conference,
TPHOLs 2004, Park City, Utah, USA, September 14-17, 2004. Proceedings,
Konrad Slind, Annette Bunker, and Ganesh Gopalakrishnan (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 50–65. DOI:http://dx.
doi.org/10.1007/978-3-540-30142-4_4

[18] Timothy Bourke, Matthias Daum, Gerwin Klein, and Rafal Kolanski.
2012. Challenges and Experiences in Managing Large-Scale Proofs. In
Conferences on Intelligent Computer Mathematics (CICM) / Mathemati-
cal Knowledge Management, Makarius Wenzel (Ed.). Springer, Bremen,
Germany, 32–48.

[19] Alan Bundy. 2013. The interaction of representation and reasoning.
Proceedings of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences 469, 2157 (2013). DOI:http://dx.doi.org/10.1098/rspa.
2013.0194

[20] Alan Bundy, David Basin, Dieter Hutter, and Andrew Ireland. 2005.
Rippling: Meta-Level Guidance for Mathematical Reasoning. Cambridge
University Press, New York, NY, USA.

[21] Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, and Klaus Ostermann.
2014. A Theory of Changes for Higher-order Languages: Incremen-
talizing λ-calculi by Static Differentiation. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI ’14). ACM, New York, NY, USA, 145–155. DOI:
http://dx.doi.org/10.1145/2594291.2594304

[22] Ahmet Celik, Karl Palmskog, and Milos Gligoric. 2017. iCoq: Regres-
sion Proof Selection for Large-scale Verification Projects. In Proceedings
of the 32Nd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2017). IEEE Press, Piscataway, NJ, USA, 171–182.
http://dl.acm.org/citation.cfm?id=3155562.3155588

[23] Adam Chlipala. 2013. The Bedrock Structured Programming System:
Combining Generative Metaprogramming and Hoare Logic in an Ex-
tensible Program Verifier. In Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Programming (ICFP ’13). ACM,
New York, NY, USA, 391–402. DOI:http://dx.doi.org/10.1145/2500365.
2500592

[24] Adam Chlipala. 2013. Certified Programming with Dependent Types -
A Pragmatic Introduction to the Coq Proof Assistant. MIT Press. http:
//mitpress.mit.edu/books/certified-programming-dependent-types

[25] Adam Chlipala. 2017. Library Equality. (2017). http://adam.chlipala.
net/cpdt/html/Equality.html

[26] Lukasz Czajka and Cezary Kaliszyk. 2017. Hammer for Coq: Automa-
tion for Dependent Type Theory. (2017). http://cl-informatik.uibk.ac.
at/cek/coqhammer/

[27] Pierre-Évariste Dagand. 2017. The essence of ornaments. J. Funct. Pro-
gram. 27 (2017), e9. DOI:http://dx.doi.org/10.1017/S0956796816000356

[28] Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers.
2013. Meta-theory à La Carte. In Proceedings of the 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’13). ACM, New York, NY, USA, 207–218. DOI:
http://dx.doi.org/10.1145/2429069.2429094

[29] Benjamin Delaware, Steven Keuchel, Tom Schrijvers, and Bruno C.d.S.
Oliveira. 2013. Modular Monadic Meta-theory. In Proceedings of
the 18th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP ’13). ACM, New York, NY, USA, 319–330. DOI:
http://dx.doi.org/10.1145/2500365.2500587

[30] Maxime Dénes. 2017. Coq 8.7 beta 1 is out. (2017). http://coq.inria.fr/
news/137.html

[31] Amy Felty and Douglas Howe. 1994. Generalization and reuse of
tactic proofs. In Logic Programming and Automated Reasoning: 5th
International Conference (LPAR ’94), Frank Pfenning (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 1–15. DOI:http://dx.doi.org/10.
1007/3-540-58216-9_25

[32] Thibault Gauthier and Cezary Kaliszyk. 2014. Matching concepts
across HOL libraries. In CICM ’14 (LNCS), Stephen Watt, James Daven-
port, Alan Sexton, Petr Sojka, and Josef Urban (Eds.), Vol. 8543. Springer
Verlag, 267–281. DOI:http://dx.doi.org/10.1007/978-3-319-08434-3_20

[33] Georges Gonthier, Beta Ziliani, Aleksandar Nanevski, and Derek
Dreyer. 2011. How to Make Ad Hoc Proof Automation Less Ad Hoc.
In Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming (ICFP ’11). ACM, New York, NY, USA, 163–175.
DOI:http://dx.doi.org/10.1145/2034773.2034798

[34] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jie-
ung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An
Extensible Architecture for Building Certified Concurrent OS Kernels.
In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16). USENIX Association, GA, 653–669. https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/gu

[35] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program
Synthesis. Foundations and Trends in Programming Languages 4, 1-2
(2017), 1–119. DOI:http://dx.doi.org/10.1561/2500000010

[36] Martin Hofmann. 1997. Syntax and Semantics of Dependent Types.
In Semantics and Logics of Computation. Cambridge University Press,
79–130.

[37] Brian Huffman and Ondřej Kunčar. 2013. Lifting and Transfer: A
Modular Design for Quotients in Isabelle/HOL. In Certified Programs
and Proofs: Third International Conference (CPP 2013), Georges Gonthier
and Michael Norrish (Eds.). Springer International Publishing, Cham,
131–146. DOI:http://dx.doi.org/10.1007/978-3-319-03545-1_9

[38] D. Hutter. 2000. Management of change in structured verification. In
ASE 2000. 23–31. DOI:http://dx.doi.org/10.1109/ASE.2000.873647

[39] Einar Broch Johnsen and Christoph Lüth. 2004. Theorem Reuse by
Proof Term Transformation. In Theorem Proving in Higher Order Log-
ics: 17th International Conference (TPHOLs 2004), Konrad Slind, An-
nette Bunker, and Ganesh Gopalakrishnan (Eds.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 152–167. DOI:http://dx.doi.org/10.1007/
978-3-540-30142-4_12

[40] Matej Kosik. 2017. Coq Pull Request # 652: Put all plugins behind an
“API”. (2017). http://github.com/coq/coq/pull/652

[41] Shuvendu Lahiri, Kenneth McMillan, , and Chris Hawblitzel. 2013. Dif-
ferential Assertion Checking, In Foundations of Software Engineering
(FSE’13). (August 2013). https://www.microsoft.com/en-us/research/
publication/differential-assertion-checking-2/

[42] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and
Willem Visser. 2017. S3: Syntax- and Semantic-guided Repair Synthesis
via Programming by Examples. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2017). ACM,
New York, NY, USA, 593–604. DOI:http://dx.doi.org/10.1145/3106237.
3106309

[43] Xavier Leroy. 2006. Formal certification of a compiler back-end, or:
programming a compiler with a proof assistant. In 33rd ACM sym-
posium on Principles of Programming Languages. ACM Press, 42–54.
http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf

http://dx.doi.org/10.1145/1328438.1328443
http://github.com/marshall-lee/software_foundations
http://github.com/marshall-lee/software_foundations
http://dl.acm.org/citation.cfm?id=646793.704711
https://hal.inria.fr/hal-00875395
https://hal.inria.fr/hal-00875395
http://dx.doi.org/10.1007/978-3-540-30142-4_4
http://dx.doi.org/10.1007/978-3-540-30142-4_4
http://dx.doi.org/10.1098/rspa.2013.0194
http://dx.doi.org/10.1098/rspa.2013.0194
http://dx.doi.org/10.1145/2594291.2594304
http://dl.acm.org/citation.cfm?id=3155562.3155588
http://dx.doi.org/10.1145/2500365.2500592
http://dx.doi.org/10.1145/2500365.2500592
http://mitpress.mit.edu/books/certified-programming-dependent-types
http://mitpress.mit.edu/books/certified-programming-dependent-types
http://adam.chlipala.net/cpdt/html/Equality.html
http://adam.chlipala.net/cpdt/html/Equality.html
http://cl-informatik.uibk.ac.at/cek/coqhammer/
http://cl-informatik.uibk.ac.at/cek/coqhammer/
http://dx.doi.org/10.1017/S0956796816000356
http://dx.doi.org/10.1145/2429069.2429094
http://dx.doi.org/10.1145/2500365.2500587
http://coq.inria.fr/news/137.html
http://coq.inria.fr/news/137.html
http://dx.doi.org/10.1007/3-540-58216-9_25
http://dx.doi.org/10.1007/3-540-58216-9_25
http://dx.doi.org/10.1007/978-3-319-08434-3_20
http://dx.doi.org/10.1145/2034773.2034798
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
http://dx.doi.org/10.1561/2500000010
http://dx.doi.org/10.1007/978-3-319-03545-1_9
http://dx.doi.org/10.1109/ASE.2000.873647
http://dx.doi.org/10.1007/978-3-540-30142-4_12
http://dx.doi.org/10.1007/978-3-540-30142-4_12
http://github.com/coq/coq/pull/652
https://www.microsoft.com/en-us/research/publication/differential-assertion-checking-2/
https://www.microsoft.com/en-us/research/publication/differential-assertion-checking-2/
http://dx.doi.org/10.1145/3106237.3106309
http://dx.doi.org/10.1145/3106237.3106309
http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf

Adapting Proof Automation to Adapt Proofs CPP’18, January 8–9, 2018, Los Angeles, CA, USA

[44] Xavier Leroy. 2013. Commit to CompCert: lib/Inte-
gers.v. (2013). http://github.com/AbsInt/CompCert/commit/
6f3225b0623b9c97eed7d40ddc320b08c79c6518

[45] letouzey. 2011. Commit to coq: change definition of divide (com-
pat with Znumtheory). (2011). http://github.com/coq/coq/commit/
81c4c8bc418cdf42cc88249952dbba465068202c

[46] Fan Long and Martin Rinard. 2016. Automatic Patch Generation
by Learning Correct Code. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’16). ACM, New York, NY, USA, 298–312. DOI:http://dx.doi.org/
10.1145/2837614.2837617

[47] Nicolas Magaud and Yves Bertot. 2002. Changing Data Structures
in Type Theory: A Study of Natural Numbers. In Types for Proofs
and Programs: International Workshop (TYPES 2000), Paul Callaghan,
Zhaohui Luo, James McKinna, and Robert Pollack (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 181–196. DOI:http://dx.doi.org/
10.1007/3-540-45842-5_12

[48] SergeyMechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix:
Scalable Multiline Program Patch Synthesis via Symbolic Analysis. In
Proceedings of the 38th International Conference on Software Engineering
(ICSE ’16). ACM, New York, NY, USA, 691–701. DOI:http://dx.doi.org/
10.1145/2884781.2884807

[49] Guillaume Melquiond. 2017. Commit to coq: Make IZR use a compact
representation of integers. (2017). http://github.com/coq/coq/commit/
a4a76c253474ac4ce523b70d0150ea5dcf546385

[50] Tom Mens and Tom Tourwé. 2004. A Survey of Software Refactoring.
IEEE Trans. Softw. Eng. 30, 2 (Feb. 2004), 126–139. DOI:http://dx.doi.
org/10.1109/TSE.2004.1265817

[51] Dale Miller and Gopalan Nadathur. 2012. Programming with Higher-
Order Logic (1st ed.). Cambridge University Press, New York, NY,
USA.

[52] Victor Cacciari Miraldo, Pierre-Évariste Dagand, and Wouter Swier-
stra. 2017. Type-directed Diffing of Structured Data. In Proceedings
of the 2Nd ACM SIGPLAN International Workshop on Type-Driven
Development (TyDe 2017). ACM, New York, NY, USA, 2–15. DOI:
http://dx.doi.org/10.1145/3122975.3122976

[53] Martin Monperrus. 2017. Automatic Software Repair: a Bibliogra-
phy. ACM Computing Surveys (2017). https://hal.archives-ouvertes.fr/
hal-01206501/file/survey-automatic-repair.pdf

[54] Anne Mulhern. 2006. Proof Weaving. In In Proceedings of the First
Informal ACM SIGPLAN Workshop on Mechanizing Metatheory.

[55] Karl Palmskog. 2017. Commit to verdi-raft: Port to Coq 8.6. (2017).
http://github.com/uwplse/verdi-raft/pull/43/files

[56] L. C. Paulson and J. C. Blanchette. 2012. Three years of experience
with Sledgehammer, a practical link between automatic and interactive

theorem provers. In International Workshop on the Implementation of
Logics (IWIL 2010) (EPiC Series), G. Sutcliffe, S. Schulz, and E. Ternovska
(Eds.), Vol. 2. EasyChair, 1–11.

[57] Yu Pei, Carlo A. Furia, Martin Nordio, and Bertrand Meyer. 2014. Au-
tomatic Program Repair by Fixing Contracts. In Proceedings of the 17th
International Conference on Fundamental Approaches to Software Engi-
neering - Volume 8411. Springer-Verlag New York, Inc., New York, NY,
USA, 246–260. DOI:http://dx.doi.org/10.1007/978-3-642-54804-8_17

[58] Olivier Pons. 2000. Generalization in Type Theory Based Proof Assis-
tants (TYPES ’00). 217–232.

[59] Kenneth Roe and Scott Smith. 2016. CoqPIE: An IDE Aimed at Im-
proving Proof Development Productivity. In Interactive Theorem Prov-
ing: 7th International Conference, ITP 2016, Nancy, France, August
22-25, 2016, Proceedings, Jasmin Christian Blanchette and Stephan
Merz (Eds.). Springer International Publishing, Cham, 491–499. DOI:
http://dx.doi.org/10.1007/978-3-319-43144-4_32

[60] Daniel Selsam and Leonardo de Moura. 2016. Congruence Closure in
Intensional Type Theory. In Automated Reasoning: 8th International
Joint Conference (IJCAR 2016), Nicola Olivetti and Ashish Tiwari (Eds.).
Springer International Publishing, Cham, 99–115. DOI:http://dx.doi.
org/10.1007/978-3-319-40229-1_8

[61] Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. 2017. Equiva-
lences for Free! (July 2017). https://hal.inria.fr/hal-01559073 working
paper or preprint.

[62] Iain Whiteside, David Aspinall, Lucas Dixon, and Gudmund Grov.
2011. Towards Formal Proof Script Refactoring. In Intelligent Computer
Mathematics: 18th Symposium, Calculemus 2011, and 10th International
Conference, MKM 2011, Bertinoro, Italy, July 18-23, 2011. Proceedings,
James H. Davenport, WilliamM. Farmer, Josef Urban, and Florian Rabe
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 260–275. DOI:
http://dx.doi.org/10.1007/978-3-642-22673-1_18

[63] Thomas Williams, Pierre-Évariste Dagand, and Didier Rémy. 2014.
Ornaments in Practice. In Proceedings of the 10th ACM SIGPLAN Work-
shop on Generic Programming (WGP ’14). ACM, New York, NY, USA,
15–24. DOI:http://dx.doi.org/10.1145/2633628.2633631

[64] DougWoos, James R.Wilcox, Steve Anton, Zachary Tatlock, Michael D.
Ernst, and Thomas Anderson. 2016. Planning for Change in a Formal
Verification of the Raft Consensus Protocol. In Proceedings of the 5th
ACM SIGPLAN Conference on Certified Programs and Proofs (CPP 2016).
ACM, New York, NY, USA, 154–165. DOI:http://dx.doi.org/10.1145/
2854065.2854081

[65] Théo Zimmermann and Hugo Herbelin. 2015. Automatic and Trans-
parent Transfer of Theorems along Isomorphisms in the Coq Proof
Assistant. CoRR abs/1505.05028 (2015). http://arxiv.org/abs/1505.05028

http://github.com/AbsInt/CompCert/commit/6f3225b0623b9c97eed7d40ddc320b08c79c6518
http://github.com/AbsInt/CompCert/commit/6f3225b0623b9c97eed7d40ddc320b08c79c6518
http://github.com/coq/coq/commit/81c4c8bc418cdf42cc88249952dbba465068202c
http://github.com/coq/coq/commit/81c4c8bc418cdf42cc88249952dbba465068202c
http://dx.doi.org/10.1145/2837614.2837617
http://dx.doi.org/10.1145/2837614.2837617
http://dx.doi.org/10.1007/3-540-45842-5_12
http://dx.doi.org/10.1007/3-540-45842-5_12
http://dx.doi.org/10.1145/2884781.2884807
http://dx.doi.org/10.1145/2884781.2884807
http://github.com/coq/coq/commit/a4a76c253474ac4ce523b70d0150ea5dcf546385
http://github.com/coq/coq/commit/a4a76c253474ac4ce523b70d0150ea5dcf546385
http://dx.doi.org/10.1109/TSE.2004.1265817
http://dx.doi.org/10.1109/TSE.2004.1265817
http://dx.doi.org/10.1145/3122975.3122976
https://hal.archives-ouvertes.fr/hal-01206501/file/survey-automatic-repair.pdf
https://hal.archives-ouvertes.fr/hal-01206501/file/survey-automatic-repair.pdf
http://github.com/uwplse/verdi-raft/pull/43/files
http://dx.doi.org/10.1007/978-3-642-54804-8_17
http://dx.doi.org/10.1007/978-3-319-43144-4_32
http://dx.doi.org/10.1007/978-3-319-40229-1_8
http://dx.doi.org/10.1007/978-3-319-40229-1_8
https://hal.inria.fr/hal-01559073
http://dx.doi.org/10.1007/978-3-642-22673-1_18
http://dx.doi.org/10.1145/2633628.2633631
http://dx.doi.org/10.1145/2854065.2854081
http://dx.doi.org/10.1145/2854065.2854081
http://arxiv.org/abs/1505.05028

	Abstract
	1 Introduction
	2 Automation, Reimagined
	3 Generating Reusable Patches
	3.1 Motivating the Core
	3.2 Composing Components

	4 Case Studies: Changes in the Wild
	4.1 Updating Definitions
	4.2 Porting Definitions
	4.3 Updating Proof Assistant Versions

	5 Inside the Core
	5.1 Inside the Components
	5.2 Inside the Procedure
	5.3 Trusted Computing Base

	6 Testing Boundaries
	6.1 Patch Generation Suite
	6.2 Three Challenges
	6.3 Performance

	7 Conclusions & Future Work
	8 Related Work
	Acknowledgments
	References

